Skip to main content
Log in

Molten Al and (0001) α-Al2O3 Single Crystal: Interface Stability

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The roughness on the “c”-plane (0001) sapphire single crystal reduces wetting of molten aluminum under Ar gas (99.999 pct) and PO2 10−15 Pa from 1073 K to 1473 K (800 °C to 1200 °C). The contact angle effect was partially understood by the roughness factor, R; however, the interfacial phenomenon involving this effect is yet a topic to study as it also depends, between other things, on the shape of droplet and the relationship to its substrate. The theory explains that the surface tension of liquid aluminum obtained by the sessile drop test can be determined just when a substrate is polished or free of any surface imperfection. However, roughness of sapphire (0001) surface promotes an apparent surface tension that exhibits different trends of wetting to that proposed in previous studies. This property adds to the interfacial wetting phenomena obtained from the Al-Al2O3 couple system and provides answers for contact angle trends toward a much more stable interface, which when coupled with thermodynamic conditions may help in the manufacturing, deterioration, and reliability of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. N. Eustathopoulos, M. G. Nicholas and B. Drevet: Wettability at High Temperatures, Vol. 3, pp. 120-222, Pergamon Materials Series, New York, 1999.

    Google Scholar 

  2. B. Chalmers: Principles of Solidification. Krieger, Melbourne, 1982.

    Google Scholar 

  3. D. E. Clark and B. K. Zoitos: Corrosion of Glass, Ceramics, Ceramics Superconductors. Noyes, Park Ridge, 1991, pp. 21-78.

    Google Scholar 

  4. R. N. Wenzel, Ind. Eng. Chem., 1936, Vol. 28, No. 8, pp. 988-994.

    Article  Google Scholar 

  5. W.D. Kingery, H. K. Bowen and D. R. Uhlmann: Introduction to Ceramics. Wiley Interscience, New York, 1976, p. 372.

    Google Scholar 

  6. T. Young, Phil. Trans. Roy. Soc. Lond., 1805, Vol. 95A, pp. 65-67.

    Article  Google Scholar 

  7. A. Dupre: Theorie Mecanique de la Chaleur, Chapter IX, Actions Moleculaires (Suite), p.87, Pub. Gauthier-Villars, Paris, 1869.

    Google Scholar 

  8. H. Nakae, R. Inui, Y. Hirata and H. Saito, Acta Mater., 1998, Vol. 46, No. 7, pp. 2313-2318.

    Article  Google Scholar 

  9. Z. Yoshimitsu, A. Nakajima, T. Watanabe and K. Hashimoto, Langmuir, 2002, Vol. 18, pp. 5818-5822.

    Article  Google Scholar 

  10. P. Shen, H. Fujii, T. Matsumoto and K. Nogi, Acta Materialia, 2003, Vol. 48, pp. 779-784.

    Google Scholar 

  11. J. G. Li, Ceram. Inter., 1994, Vol. 20, pp. 391-412.

    Article  Google Scholar 

  12. J. Aguilar-Santillan, Metallurgical and Materials Transaction A, 2010, Vol 41A, p.686-688.

    Google Scholar 

  13. J. W. Nowok, Mat. Sci. Eng., 1997, Vol. A232, pp. 157-162.

    Article  Google Scholar 

  14. X. B. Zhou and J. Th. M. De Hosson, Acta Mater., 1996, Vol. 44, No. 2, pp. 421-426.

    Article  Google Scholar 

  15. J. J. Brennan and J. A. Pask, J. Am. Ceram. Soc., 1968, Vol. 51, No. 10, pp. 569-573.

    Article  Google Scholar 

  16. H. John and H. Hausner, Int. J. High Technol. Ceram., 1986, 2(1), pp. 73-78.

    Article  Google Scholar 

  17. V. Laurent, D. Chatain, C. Chatillon and N. Eustathopoulos, Acta Metall., 1988, Vol. 36, No. 7, pp. 1797-1803.

    Article  Google Scholar 

  18. S. K. Rhee, J. Am. Ceramic. Soc., 1970, Vol. 53, No. 7, pp. 386-389.

    Article  Google Scholar 

  19. G. Levi and W. D. Kaplan, Acta Materialia, 2002, Vol. 50, pp. 75-88.

    Article  Google Scholar 

  20. D. J. Wang and S. T. Wu, Acta Metall. Mater., 1994, Vol. 42, No. 12, pp. 4029-4034.

    Article  Google Scholar 

  21. K. Landry and N. Eustathopoulos, Acta. Mater., 1996, Vol. 44, No. 10, pp. 3923-3932.

    Article  Google Scholar 

  22. J. A. Champion, B. J. Keene and J. M. Sillwood, J. Mat. Sci., 1969, Vol. 4, No. 1, pp. 39-49.

    Article  Google Scholar 

  23. P. Shen, H. Fujii, T. Matsumoto and K. Nogi, Scripta Materialia, 2003, Vol. 48, pp. 779-784.

    Article  Google Scholar 

  24. J. Aguilar-Santillan, Metallurgical and Materials Transaction B, 2009, Vol 40B, pp. 377-379.

    Google Scholar 

  25. L. Goumiri, J. C. Joud, P. Desre, Surf. Sci., 1979, Vol. 83, pp. 471-486.

    Article  Google Scholar 

  26. P. Laty, J. C. Joud, P. Desre, Surf. Sci., 1977, Vol. 89, pp. 508-520.

    Article  Google Scholar 

  27. W. A. Zisman, Ind. Eng. Chem., 1963, Vol. 55, No. 10, pp. 18-38.

    Article  Google Scholar 

  28. J. Ahn and J. W. Rabalais, Surface Science, 1997, Vol. 388, pp. 121-131.

    Article  Google Scholar 

  29. T. M. French and G. A. Somorjai, J. Phys. Chem., 1970, Vol. 74, No. 12, pp. 2489-2495.

    Article  Google Scholar 

  30. I. Manassidis and M. J. Gillan, J. Am. Ceram. Soc., 1994, Vol. 77, No. 2, pp. 335-338.

    Article  Google Scholar 

  31. A. Marmier, A. Lozovoi and M.W. Finnis, J. Eur. Ceram. Soc., 2003, Vol. 23, pp. 2729-2735.

    Article  Google Scholar 

  32. P. W. Tasker: Surfaces of Magnesia and Alumina in Advances in Ceramics, Vol. 10. American Ceramic Society, Westerville, 1983, pp. 176–189.

    Google Scholar 

  33. P. Hartman, J. Cryst. Growth, 1989, Vol. 93, No.3, pp. 667-672.

    Article  Google Scholar 

  34. E. A. Soares, M. A. Van Hove, C. F. Walters and K. F. McCarty, Physical Review B, 2002, Vol. 65, pp. 195405-195413.

    Article  Google Scholar 

  35. T. Suzuki, S. Hishita, K. Oyoshi and R. Souda, Surface Science, 1999, Vol. 437, pp. 289-298.

    Article  Google Scholar 

Download references

Acknowledgments

The author (J.A-S) would like to mention special thanks to Dr. Richard C. Bradt, and Dr. Doru Stefanescu from the University of Alabama for their mentorship and guidance throughout this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joaquin Aguilar-santillan.

Additional information

Manuscript submitted August 25, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aguilar-santillan, J. Molten Al and (0001) α-Al2O3 Single Crystal: Interface Stability. Metall Mater Trans A 47, 4941–4950 (2016). https://doi.org/10.1007/s11661-016-3680-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3680-7

Keywords

Navigation