Skip to main content
Log in

Precipitation Modeling in Nitriding in Fe-M Binary System

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Precipitation of fine alloy nitrides near the specimen surface results in significant surface hardening in nitriding of alloyed steels. In this study, a simulation model of alloy nitride precipitation during nitriding is developed for Fe-M binary system based upon the Kampmann–Wagner numerical model in order to predict variations in the distribution of precipitates with depth. The model can predict the number density, average radius, and volume fraction of alloy nitrides as a function of depth from the surface and nitriding time. By a comparison with the experimental observation in a nitrided Fe-Cr alloy, it was found that the model can predict successfully the observed particle distribution from the surface into depth when appropriate solubility of CrN, interfacial energy between CrN and α, and nitrogen flux at the surface are selected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. H. Driver and J. M. Papazian: Acta Metall., 1973, vol. 21, pp. 1139-49

    Article  Google Scholar 

  2. B. Mortimer, P. Grieveson and K. H. Jack: Scand. J. Metall., 1972, vol. 1, pp. 203-209

    Google Scholar 

  3. M. Sennour, P. H. Jouneau and C. Esnouf: J. Mater. Sci., 2004, vol. 39, pp. 4521-4531

    Article  Google Scholar 

  4. D. H. Jack: Acta Metall., 1976, vol. 24, pp. 137-146

    Article  Google Scholar 

  5. D. S. Rickerby, S. Henderson, A. Hendry and K. H. Jack: Acta Metall., 1986, vol. 34, pp. 1911-1923

    Article  Google Scholar 

  6. G. Miyamoto, Y. Tomio, T. Furuhara and T. Maki: Mater. Sci. Forum, 2005, vol. 492-493, pp.539-544

    Article  Google Scholar 

  7. M. Pope, P. Grieveson and K. H. Jack: Scand. J. Metall., 1973, vol. 2, pp. 29-34

    Google Scholar 

  8. J. D. Baird: J. Iron Steel Inst., 1966, vol. 204, pp. 1122-1130

    Google Scholar 

  9. B. Jonsson-Holmqvist, P. Grieveson and K. H. Jack: Scand. J. Metall., 1973, vol. 2, pp. 35-38

    Google Scholar 

  10. H. H. Podgurski and H. E. Knechtel: Trans. Metall. Soc. AIME, 1969, vol. 245, pp. 1595-1602

    Google Scholar 

  11. M. H. Biglari, C. M. Brakman and E. J. Mittemeijer: Phil. Mag. A, 1995, vol. 72, pp. 1280-1299

    Google Scholar 

  12. Y. Tomio, G. Miyamoto, T. Furuhara and T. Maki: Proc. the 3rd Int. Conf. on Advanced Structural Steels, 2006, pp. 460–64.

  13. B. J. Lightfoot and D. H. Jack: Heat Treatment 73, Metals Society, London, 1975, pp. 59-65

    Google Scholar 

  14. C. Wagner: Z. Elektrochem, 1959, vol. 63, pp. 772-782.

    Google Scholar 

  15. Y. Sun and T. Bell: Mater. Sci. Engng. A, 1997, vol. 224, pp. 33-47.

    Article  Google Scholar 

  16. R. E. Schacherl, P. C. J. Graat and E. J. Mittemeijer: Metall. Mater. Trans. A, 2004, vol. 35, pp. 3387- 3398

    Article  Google Scholar 

  17. K. Murakami, N. Nishida, K. Osamura, Y. Tomota and T. Suzuk: Acta Mater., 2005, vol. 53, pp. 2563-2579

    Article  Google Scholar 

  18. K. Kusumi, T. Senuma, M. Suehiro, M. Sugiyama, I. Matsuo: Tetsu-to-Hagané, 2000, vol. 86, pp. 682-688.

    Google Scholar 

  19. R. Kampmann and R. Wagner: in Decomposition of Alloys: The Early Stages, P. Haasen, V. Gerold, R. Wagner and M.F. Ashby, eds., Pergamon Press, Oxford, 1984, pp. 91–103

  20. J. D. Robson: Acta Mater., 2004, vol. 52, pp.1409-1421

    Article  Google Scholar 

  21. J. D. Robson, M. J. Jones and P. B. Prangnell: Acta Mater., 2003, vol. 51, pp.1453-1468

    Article  Google Scholar 

  22. J. Yang and M. Enomoto: ISIJ Int., 2005, vol. 45, pp. 1335-1344

    Article  Google Scholar 

  23. J. B. Yang, M. Enomoto and C. Zhang: Mater. Sci. Engng. A, 2006, vol. 422, pp. 232-240

    Article  Google Scholar 

  24. S. Yamazaki and H. K. D. H. Bhadeshia: Mater. Sci. Tech., 2003, vol. 19, pp. 1335-1343

    Article  Google Scholar 

  25. S. Yamazaki and H. K. D. H. Bhadeshia: Proc. Roy. Soc. A, 2006, vol. 462, pp. 2315-2330

    Article  Google Scholar 

  26. A. Sawahata, M. Enomoto, K. Okuda and T. Yamashita: Tetsu-to-Hagané, 2008, vol. 94, pp. 21-28

    Article  Google Scholar 

  27. G. Miyamoto, Y. Tomio, H. Aota, K. Oh-ishi, K. Hono, T. Furuhara: Materi. Sci. Technol., 2011, vol. 27, pp. 742-746

    Google Scholar 

  28. T. Furuhara: Cut Edge of Models for Predicting Microstructure and Mechanical Properties, the Iron and Steel Institute of Japan, Tokyo, Japan, 2010, pp. 29-38

    Google Scholar 

  29. H.P. Van Landeghem, M. Gouné, A. Redjaïmia: J. Crystal Growth, 2012, vol. 341, pp. 53-60

    Article  Google Scholar 

  30. R. Becker and W. Döring: Ann. Phys. Leipzig, 1935, vol. 24, pp. 719-752

    Article  Google Scholar 

  31. M. Enomoto and N. Nojiri: Scripta Mater., 1997, vol. 36, pp.625-632

    Article  Google Scholar 

  32. P. Kampmann, T. H. Ebel, M. Haese and R. Wagner: Phys. Stat. Sol. (b), 1992, vol. 172, pp. 295-308

    Article  Google Scholar 

  33. M. Enomoto and H. I. Aaronson: J. Appl. Phys., 1980, vol. 51, pp. 818-819

    Article  Google Scholar 

  34. R. Okamoto and M. Suehiro: Tetsu-to-Hagané, 1998, vol. 84, pp. 650-657

    Google Scholar 

  35. P. Grieveson and E.T. Turkdogan: Trans. AIME, 1964, vol. 230, pp. 1604-09

    Google Scholar 

  36. H. Oikawa: Technol. Rep. Tohoku Univ., 1983, vol. 48, pp. 7-76

    Google Scholar 

  37. Y. Imai, T. Masumoto, M. Sakamoto: Bull. Jpn. Inst. Met., 1968, vol. 7, pp. 137-152.

    Article  Google Scholar 

  38. The Iron and Steel Institute of Japan: Handbook of Iron and Steel, 3rd ed., vol. 1, The Iron and Steel Institute of Japan, Maruzen, Tokyo, 1981, pp. 436–51.

  39. R. Rawlings and T.B. Koshal: Annual Tech. Report, No. 2. referenced in [38].

  40. J. M. Howe: Interfaces in Materials, 1997, Wiley, New York. pp. 377-447

    Google Scholar 

  41. H. C. F. Rozendaal, E. J. Mittemeijer, P. F. Colijin and P. J. van der Schaaf: Metall. Trans. A, 1983, vol. 14, pp. 395-399

    Article  Google Scholar 

Download references

Acknowledgments

Goro Miyamoto and Tadashi Furuhara gratefully acknowledge that this work was partly supported by JST-CREST Basic Research Program, “Creation of Innovative Functions of Intelligent Materials on the Basis of Element Strategy”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Goro Miyamoto.

Additional information

Manuscript submitted November 4, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tomio, Y., Miyamoto, G. & Furuhara, T. Precipitation Modeling in Nitriding in Fe-M Binary System. Metall Mater Trans A 47, 4970–4978 (2016). https://doi.org/10.1007/s11661-016-3674-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3674-5

Keywords

Navigation