Skip to main content
Log in

A Novel Method to Achieve Grain Refinement in Aluminum

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A significant grain refinement of pure aluminum is achieved upon addition of TiCN nanoparticles (NPs). Unlike the conventional inoculation, NPs can induce the physical growth restriction through the formation of NP layer on the growing grain surface. An analytical model is developed to quantitatively account for the NP effects on grain growth. The NP-induced growth control can overcome the inherent limitations of inoculation and shed light on a potential method to achieve grain refinement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. E. L. Rooy, Aluminum and Aluminum Alloys, Castings, 15, ASM International, Ohio, 1988.

    Google Scholar 

  2. [2] R. Nadella, D.G. Eskin, Q. Du and L. Katgerman: Prog Mater Sci., 2008, vol. 53, pp. 421-480.

    Article  Google Scholar 

  3. [3] Z. Wang, R.T. Qu, S. Scudino, B.A. Sun, K.G. Prashanth, D.V. Louzguine-Luzgin, M.W. Chen, Z.F. Zhang and J. Eckert: Npg Asia Mater., 2015, vol. 7, e229.

    Article  Google Scholar 

  4. [4] P.V. Liddicoat, X-Z. Liao, Y.H. Zhao, Y.T. Zhu, M.Y. Murashkin, E.J. Lavernia, R.Z. Valiev and S.P. Ringer: Nat Commun., 2010, vol. 63, pp. 1-7.

    Article  Google Scholar 

  5. [5] Y. Ali, D. Qiu, B. Jiang and F. Pan: J. Alloys Compd., 2015, vol. 619, pp. 639-651.

    Article  Google Scholar 

  6. [6] D.G. McCartney: Int. Mater. Rev., 1989, vol. 34, pp. 247-260.

    Article  Google Scholar 

  7. [7] I. Maxwell and A. Hellawell: Acta Metall., 1975, vol. 23, pp. 229-237.

    Article  Google Scholar 

  8. [8] B.S. Murty, S.A. Kori and M. Chakraborty: Int. Mater. Rev., 2002, vol. 47, pp. 3-29.

    Article  Google Scholar 

  9. [9] M-X. Zhang, P.M. Kelly, M.A. Easton and J.A. Taylor: Acta Mater., 2005, vol. 53, pp. 1427-1438.

    Article  Google Scholar 

  10. [10] B.L. Bramfitt: Metall Trans., 1970, vol. 1, pp. 1987-1990.

    Article  Google Scholar 

  11. [11] H. Men and Z. Fan: Acta Metall., 2011, vol. 59, pp. 2704-2712.

    Google Scholar 

  12. [12] R. Schmid-Fetzer, A. Kozlov: Acta Mater., 2011, vol. 59, pp. 6133-6144.

    Article  Google Scholar 

  13. [13] M. Easton and D. StJohn: Acta Mater., 2001, vol. 49, pp. 1867-1878.

    Article  Google Scholar 

  14. [14] D. Shu, B.D. Sun, J. Mi and P.S. Grant: Acta Mater., 2011, vol. 59, pp. 2135-2144.

    Article  Google Scholar 

  15. [15] H. Men, B. Jiang and Z. Fan: Acta Mater., 2010, vol. 58, pp. 6526-6534.

    Article  Google Scholar 

  16. [16] E. Akyol and M. Oner: J. Cryst. Growth., 2007, vol. 307, pp. 137-144.

    Article  Google Scholar 

  17. [17] N. Kubota, H. Otosaka, N. Doki, M. Yokota and A. Sato: J. Cryst. Growth., 2000, vol. 220, pp. 135-139.

    Article  Google Scholar 

  18. [18] Y-D. Yin and A.P. Alivisatos: Nature., 2005, vol. 437, pp. 664-670.

    Article  Google Scholar 

  19. N, Kubota and J.W. Mullin: J. Cryst. Growth, 1995, vol. 152, pp. 203–08.

  20. [20] K. Sangwal: J. Crystal Growth., 1999, vol. 203, pp. 197-212.

    Article  Google Scholar 

  21. [21] L-Y. Chen, J-Q. Xu, H. Choi, H. Konishi, S. Jin and X-C. Li: Nat Commun., 2014, vol. 5, pp. 3879-4879.

    Google Scholar 

  22. [22] B. Kowalczyk, K. J. M. Bishop, I. Lagzi, D-W Wang, Y-H Wei, S-B Han and B.A. Grzybowski: Nat Mater., 2012, vol. 11, pp. 227-232.

    Article  Google Scholar 

  23. [23] K. Wang, H.Y. Jiang, Q.D. Wang and W.J. Ding: Mater Sci Eng A., 2016, vol. 666, pp. 264-268.

    Article  Google Scholar 

  24. [24] A.L. Greer, A.M. Bunn, A. Tronche, P.V. Evans and D.J. Bristow: Acta Mater., 2000, vol. 48, pp. 2823-2835.

    Article  Google Scholar 

  25. [25] H-T. Li, Y. Wang and Z. Fan: Acta Mater., 2012, vol. 60, pp. 1528-1537.

    Article  Google Scholar 

  26. [26] Y. Ali, D. Qiu, B Jiang, F. Pan and M-X. Zhang: Scripta Mater., 2016, vol. 114, pp. 103-107.

    Article  Google Scholar 

  27. [27] M.A. Koten, P. Mukherjee and J.E. Shield: Part Part Syst Char., 2015, vol. 32, pp. 848-853.

    Article  Google Scholar 

  28. [28] H.B. Aaron, D. Fainstein and G.R. Kotler: J. Appl. Phys., 1970, vol. 41, pp. 4405-4410.

    Article  Google Scholar 

  29. Y. Du, Y.A. Chang, B. Huang, W.P. Gong, Z.P. Jin, H.H. Xu, Z.H. Y, Y. Liu, Y.H. He, F-Y. Xie: Mater. Sci. Eng. A., 2003, vol. 363, pp. 140–51.

  30. T.B. Massalski: Binary Alloy Phase Diagrams, vol. 1, 2nd ed. ASM International, Materials Park, 1990.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haiyan Jiang.

Additional information

Manuscript submitted April 12, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, K., Jiang, H., Wang, Q. et al. A Novel Method to Achieve Grain Refinement in Aluminum. Metall Mater Trans A 47, 4788–4794 (2016). https://doi.org/10.1007/s11661-016-3668-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3668-3

Keywords

Navigation