Skip to main content
Log in

Improvement in Abrasion Wear Resistance and Microstructural Changes with Deep Cryogenic Treatment of Austempered Ductile Cast Iron (ADI)

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The application of a deep cryogenic treatment during the heat-treatment processes for different types of steels has demonstrated a significant influence on their mechanical and tribological properties. A great deal of research was conducted on steels, as well as on other kinds of materials, such as hard metal, gray cast iron, aluminum, aluminum alloys, etc., but not on austempered ductile iron (ADI). In this research the influence of a deep cryogenic treatment on the microstructure and abrasive wear resistance of austempered ductile iron was investigated. The ductile cast iron was austempered at the upper ausferritic temperature, deep cryogenically treated, and afterwards tempered at two different temperatures. The abrasion wear resistance was tested using the standard ASTM G65 method. The microstructure was characterized using optical microscopy, field-emission scanning electron microscopy, electron back-scattered diffraction, and X-ray diffraction in order to define the microstructural changes that influenced the properties of the ADI. The obtained results show that the deep cryogenic treatment, in combination with different tempering temperatures, affects the matrix microstructure of the austempered ductile iron, which leads to an increase in both the abrasion wear resistance and the hardness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. [1] V. Kilicli, M. Erdogan: Int. J. Cast Met. Res. 2007, vol. 20, pp. 202–214.

    Article  Google Scholar 

  2. [2] M. Ferry, W. Xu: Mater. Charact. 2004, vol. 53, pp. 43-49

    Article  Google Scholar 

  3. A. M. Kamshushi, Doctoral thesis, University of Malta, 2005.

  4. T. Tun, K. T. Lwin (2008) J. Met. Mater. Miner. 18(2), 199-205

    Google Scholar 

  5. [5] Y. Sahin, M. Erdogan, V. Kilicli: Mater. Sci. Eng. A, 2007, vol. 444, pp. 31–38

    Article  Google Scholar 

  6. [6] C.Z. Wu, Y.J. Chen, T.S. Shih: Mater. Charact., 2002, vol. 48, pp. 43– 54

    Article  Google Scholar 

  7. [7] J. M. Han, Q. Zou, G. C. Barber, T. Nasir, D. O. Northwood, X. C. Sun, P. Seaton: Wear, 2012, vol. 201-201, pp. 99–105

    Article  Google Scholar 

  8. [8] B. Radulovic, B. Bosnjak: Mater. Tehnol. 2000, vol. 35 (5), pp. 207–212.

    Google Scholar 

  9. [9] L. Sidjanin, RE. Smallman: Mater. Sci. Technol., 1992, vol. 8, pp. 1095– 103

    Article  Google Scholar 

  10. [10] WJ. Dubensky, KB. Rundman: AFS Trans., 1985, vol. 93, pp. 389– 394

    Google Scholar 

  11. D.J. Moore, T.N. Rouns, K.B. Rundamn, J. Heat Treat. 4, 1985, vol. 1, pp. 7–24.

  12. [12] D.N. Collins: Adv. Mater. Process., 1998, vol. 154 (6), pp. H23–H29.

    Google Scholar 

  13. D. Mohanal, S. Renganarayanan, A. Kalanidhi: Cryogenics, 2001, vol. 41, pp. 149–155.

    Article  Google Scholar 

  14. [14] A. Molinari, M. Pellizzari, S. Gialanella, G. Straffelini, K.H. Stiasny: J. Mater. Process. Technol., 2001, vol. 118, pp. 350–355.

    Article  Google Scholar 

  15. [15] R.F. Barron: Cryogenics, 1982, vol. 22, pp. 409–414.

    Article  Google Scholar 

  16. [16] P.J. Singh, S.L. Mannan, T. Jayakumar, D.R.G. Achar: Eng. Fail. Anal., 2005, vol. 12, pp. 263–271.

    Article  Google Scholar 

  17. [17] B. Podgornik, F. Majdic, V. Leskovsek, J. Vizintin: Wear, 2012, vol. 288, pp. 88 – 93

    Article  Google Scholar 

  18. A. Bensely, A. Prabhakaran, D. Mohanal, G. Nagarajan: Cryogenics, 2006, vol. 45, pp. 747-754

    Article  Google Scholar 

  19. [19] F. Meng, K. Tagashira, R. Azuma, H. Sohma, ISIJ Int., 1994, vol. 34, pp. 205–210.

    Article  Google Scholar 

  20. [20] S. Šolić, F. Cajner, P. Panjan, Materialwiss. Werkstofftech., 2013, vol. 44 (12), pp. 950–958

    Article  Google Scholar 

  21. [21] S. Šolić, F. Cajner, V. Leskovšek, MP Mat. Test,. 2012, vol. 2012/10, pp. 688-693

    Google Scholar 

  22. P.F. Stratton, IFHTSE 2005. Pula, pp. 11–19

  23. Yang, H.S., Wang, J., Shen, B.L., Liu, H.H., Gao, S.J., Huang, S.J.: Wear, 2006., vol. 261, pp. 1150-1154

    Article  Google Scholar 

  24. [24] T. Slatter, R. Lewis, A.H. Jones: Wear, 2011, vol. 271, pp. 1481– 1489

    Article  Google Scholar 

  25. [25] R. Thornton, T. Slatter, A.H. Jones, R. Lewis: Wear, 2011, vol. 271, pp. 2386– 2395

    Article  Google Scholar 

  26. [26] Baldissera, P., Delprete, D.: Open Mech. Eng. J. 2008, vol. 2, pp. 1–11.

    Article  Google Scholar 

  27. S. Putatunda, C. Martis, R. Papp, and F. Diekman: Proceedings of the 26th ASM Heat Treating Society Conference, 2011, pp. 44–49.

  28. [28] S. Panneerselvam, C. J. Martis, S. K. Putatunda, J. M. Boileau: Mater. Sci. Eng., A, 2015, vol. 626, pp. 237-246

    Article  Google Scholar 

  29. [29] J. Zimba, D.J. Simbi, E. Navara, Cem. Concr. Compos., 2003, vol. 25, pp. 643–649

    Article  Google Scholar 

  30. [30] J. Yang, S. K. Putatunda: Mater. Sci. Eng., A, 2005, vol. 406, pp. 217–228

    Article  Google Scholar 

  31. [31] J. Yang, S. K. Putatunda: Mater. Des., 2004, vol. 25, pp. 219–230

    Article  Google Scholar 

  32. [32] P.H.S. Cardoso, C.L. Israel, T.R. Strohaecker: Wear, 2014, vol. 313, pp. 29–33

    Article  Google Scholar 

  33. [33] X. Sun, Y. Wang, D.Y. Li, G. Wang: Wear, 2013, vol. 301, pp. 116–121

    Article  Google Scholar 

  34. [34] S.K. Putatunda, S. Kesani, R. Tackett, G. Lawes: Mater. Sci. Eng., A, 2006, vol. 435 – 436, pp. 112-122

    Article  Google Scholar 

  35. R.E. Reed: Physical Metallurgy Principles, 2nd edn, Nostrand Company, New York, 1973

    Google Scholar 

  36. D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd edn, Chapman Hall, New York, 1992

    Book  Google Scholar 

  37. W.F. Smith, Structure and Properties of Engineering Alloys, McGraw-Hill, New York, 1981

    Google Scholar 

  38. [38] P. Y. Cheng, J. Hui-Jin, L. Jin-Hai, L. Guo-Lu: Mater. Charact. 72 (2012) 53 – 58

    Article  Google Scholar 

  39. [39] S. Laino, JA Sikora, RC Dommarco. Wear, 2008; 265:1-7.

    Article  Google Scholar 

  40. [40] AA Nofal, L. Jekova: J Univ Chem Technol Metall 2009; 44(3):213-28.

    Google Scholar 

  41. [41] AK. Chowdhury, SK. Samanta, DP. Chattopadhyay, S. Kumar, T. Ray, SS. Sinha Roy.: Indian Foundry J 2009;55(8):23-31.

    Google Scholar 

  42. [42] S. Laino, J.A. Sikora, R.C. Dommarco.: ISIJ Int 2009;49(8):1239-45.

    Article  Google Scholar 

  43. [43] S. Laino, J.A. Sikora, R.C. Dommarco. ISIJ Int 2009;49(8):1239-45

    Article  Google Scholar 

  44. S. Šolić and S. Jakovljević: Proceedings of the EWF EUROJOIN 8 Conference, 2012, pp. 91–98.

  45. S. Šolić, Z. Schauperl, and S. Jakovljević: Book of abstracts, 20th International Conference on Materials and Technology, 2012, p. 215

  46. [46] S. Panneerselvam, C. J. Martis, S. K. Putatunda, J. M. Boileau: Mater. Sci. Eng., A, 2015, vol. 626, pp. 237-246

    Article  Google Scholar 

  47. S. Šolić, Z. Schauperl, and M. Godec: Proceedings Book of 13th International Foundrymen Conference, 2013, pp. 395–403

  48. [48] Cullity BD. Elements of X-ray diffraction. Reading, MA: Addison-Wesley; 1974. pp. 391-395

    Google Scholar 

  49. G. Roberts, R. Kennedy, and G. Krauss: Tool Steels, 5th edition, ASM, 1998, pp. 99–101

  50. Xiaojun, X., Xu, W., Ederveen, F.H., van der Zwaag, S.: Wear 301 (2013) 89–93

    Article  Google Scholar 

  51. [51] Balaji Narayanaswamy, Peter Hodgson, Hossein Beladi: Wear 350-351 (2016) 155–165

    Article  Google Scholar 

  52. [52] K.H.Z. Gahr, Microstructure and Wear of Materials, Elsevier Science Ltd., Amsterdam, 1987.

    Google Scholar 

  53. [53] P.J. Mutton, J.D. Watson: Wear 1978, vol. 48, pp. 385–398.

    Article  Google Scholar 

  54. [54] L.Q. Xu, N.F. Kennon: Wear, 1991, vol. 148, pp. 101–112.

    Article  Google Scholar 

  55. A. Molinari, M. Pellizzari, S. Gialanella, G. Straffelini and K. H. Stiasny: Proceedings of Conference on Advances Materials Processes Technologies, 1999, pp. 1461–69.

  56. Berrahmoune, M.R., Berveiller, S., Inal, K., Moulin, A., Patoor, E.: Mater. Sci. Eng. A, 2004, vol. 378, pp. 304–307

    Article  Google Scholar 

  57. [57] J.D. Gates: Wear, 1998, vol. 214, pp. 139–146

    Article  Google Scholar 

  58. [58] M.M. Kruschov, Wear, 1974, vol. 28, pp. 69–88.

    Article  Google Scholar 

  59. [59] R.C.D. Richardson: Wear, 1968, vol. 11, pp. 245–345

    Article  Google Scholar 

  60. [60] R.A. Martínez: Eng. Fract. Mech., 2010, vol. 77, pp. 2749–2762

    Article  Google Scholar 

  61. [61] G. Francucci, J. Sikora, R. Dommarco: Mater. Sci. Eng., A, 2008, vol. 485, pp. 46–54

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanja Šolić.

Additional information

Manuscript submitted October 8, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Šolić, S., Godec, M., Schauperl, Z. et al. Improvement in Abrasion Wear Resistance and Microstructural Changes with Deep Cryogenic Treatment of Austempered Ductile Cast Iron (ADI). Metall Mater Trans A 47, 5058–5070 (2016). https://doi.org/10.1007/s11661-016-3659-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3659-4

Keywords

Navigation