Abstract
The application of a deep cryogenic treatment during the heat-treatment processes for different types of steels has demonstrated a significant influence on their mechanical and tribological properties. A great deal of research was conducted on steels, as well as on other kinds of materials, such as hard metal, gray cast iron, aluminum, aluminum alloys, etc., but not on austempered ductile iron (ADI). In this research the influence of a deep cryogenic treatment on the microstructure and abrasive wear resistance of austempered ductile iron was investigated. The ductile cast iron was austempered at the upper ausferritic temperature, deep cryogenically treated, and afterwards tempered at two different temperatures. The abrasion wear resistance was tested using the standard ASTM G65 method. The microstructure was characterized using optical microscopy, field-emission scanning electron microscopy, electron back-scattered diffraction, and X-ray diffraction in order to define the microstructural changes that influenced the properties of the ADI. The obtained results show that the deep cryogenic treatment, in combination with different tempering temperatures, affects the matrix microstructure of the austempered ductile iron, which leads to an increase in both the abrasion wear resistance and the hardness.
Similar content being viewed by others
References
[1] V. Kilicli, M. Erdogan: Int. J. Cast Met. Res. 2007, vol. 20, pp. 202–214.
[2] M. Ferry, W. Xu: Mater. Charact. 2004, vol. 53, pp. 43-49
A. M. Kamshushi, Doctoral thesis, University of Malta, 2005.
T. Tun, K. T. Lwin (2008) J. Met. Mater. Miner. 18(2), 199-205
[5] Y. Sahin, M. Erdogan, V. Kilicli: Mater. Sci. Eng. A, 2007, vol. 444, pp. 31–38
[6] C.Z. Wu, Y.J. Chen, T.S. Shih: Mater. Charact., 2002, vol. 48, pp. 43– 54
[7] J. M. Han, Q. Zou, G. C. Barber, T. Nasir, D. O. Northwood, X. C. Sun, P. Seaton: Wear, 2012, vol. 201-201, pp. 99–105
[8] B. Radulovic, B. Bosnjak: Mater. Tehnol. 2000, vol. 35 (5), pp. 207–212.
[9] L. Sidjanin, RE. Smallman: Mater. Sci. Technol., 1992, vol. 8, pp. 1095– 103
[10] WJ. Dubensky, KB. Rundman: AFS Trans., 1985, vol. 93, pp. 389– 394
D.J. Moore, T.N. Rouns, K.B. Rundamn, J. Heat Treat. 4, 1985, vol. 1, pp. 7–24.
[12] D.N. Collins: Adv. Mater. Process., 1998, vol. 154 (6), pp. H23–H29.
D. Mohanal, S. Renganarayanan, A. Kalanidhi: Cryogenics, 2001, vol. 41, pp. 149–155.
[14] A. Molinari, M. Pellizzari, S. Gialanella, G. Straffelini, K.H. Stiasny: J. Mater. Process. Technol., 2001, vol. 118, pp. 350–355.
[15] R.F. Barron: Cryogenics, 1982, vol. 22, pp. 409–414.
[16] P.J. Singh, S.L. Mannan, T. Jayakumar, D.R.G. Achar: Eng. Fail. Anal., 2005, vol. 12, pp. 263–271.
[17] B. Podgornik, F. Majdic, V. Leskovsek, J. Vizintin: Wear, 2012, vol. 288, pp. 88 – 93
A. Bensely, A. Prabhakaran, D. Mohanal, G. Nagarajan: Cryogenics, 2006, vol. 45, pp. 747-754
[19] F. Meng, K. Tagashira, R. Azuma, H. Sohma, ISIJ Int., 1994, vol. 34, pp. 205–210.
[20] S. Šolić, F. Cajner, P. Panjan, Materialwiss. Werkstofftech., 2013, vol. 44 (12), pp. 950–958
[21] S. Šolić, F. Cajner, V. Leskovšek, MP Mat. Test,. 2012, vol. 2012/10, pp. 688-693
P.F. Stratton, IFHTSE 2005. Pula, pp. 11–19
Yang, H.S., Wang, J., Shen, B.L., Liu, H.H., Gao, S.J., Huang, S.J.: Wear, 2006., vol. 261, pp. 1150-1154
[24] T. Slatter, R. Lewis, A.H. Jones: Wear, 2011, vol. 271, pp. 1481– 1489
[25] R. Thornton, T. Slatter, A.H. Jones, R. Lewis: Wear, 2011, vol. 271, pp. 2386– 2395
[26] Baldissera, P., Delprete, D.: Open Mech. Eng. J. 2008, vol. 2, pp. 1–11.
S. Putatunda, C. Martis, R. Papp, and F. Diekman: Proceedings of the 26th ASM Heat Treating Society Conference, 2011, pp. 44–49.
[28] S. Panneerselvam, C. J. Martis, S. K. Putatunda, J. M. Boileau: Mater. Sci. Eng., A, 2015, vol. 626, pp. 237-246
[29] J. Zimba, D.J. Simbi, E. Navara, Cem. Concr. Compos., 2003, vol. 25, pp. 643–649
[30] J. Yang, S. K. Putatunda: Mater. Sci. Eng., A, 2005, vol. 406, pp. 217–228
[31] J. Yang, S. K. Putatunda: Mater. Des., 2004, vol. 25, pp. 219–230
[32] P.H.S. Cardoso, C.L. Israel, T.R. Strohaecker: Wear, 2014, vol. 313, pp. 29–33
[33] X. Sun, Y. Wang, D.Y. Li, G. Wang: Wear, 2013, vol. 301, pp. 116–121
[34] S.K. Putatunda, S. Kesani, R. Tackett, G. Lawes: Mater. Sci. Eng., A, 2006, vol. 435 – 436, pp. 112-122
R.E. Reed: Physical Metallurgy Principles, 2nd edn, Nostrand Company, New York, 1973
D.A. Porter, K.E. Easterling, Phase Transformations in Metals and Alloys, 2nd edn, Chapman Hall, New York, 1992
W.F. Smith, Structure and Properties of Engineering Alloys, McGraw-Hill, New York, 1981
[38] P. Y. Cheng, J. Hui-Jin, L. Jin-Hai, L. Guo-Lu: Mater. Charact. 72 (2012) 53 – 58
[39] S. Laino, JA Sikora, RC Dommarco. Wear, 2008; 265:1-7.
[40] AA Nofal, L. Jekova: J Univ Chem Technol Metall 2009; 44(3):213-28.
[41] AK. Chowdhury, SK. Samanta, DP. Chattopadhyay, S. Kumar, T. Ray, SS. Sinha Roy.: Indian Foundry J 2009;55(8):23-31.
[42] S. Laino, J.A. Sikora, R.C. Dommarco.: ISIJ Int 2009;49(8):1239-45.
[43] S. Laino, J.A. Sikora, R.C. Dommarco. ISIJ Int 2009;49(8):1239-45
S. Šolić and S. Jakovljević: Proceedings of the EWF EUROJOIN 8 Conference, 2012, pp. 91–98.
S. Šolić, Z. Schauperl, and S. Jakovljević: Book of abstracts, 20th International Conference on Materials and Technology, 2012, p. 215
[46] S. Panneerselvam, C. J. Martis, S. K. Putatunda, J. M. Boileau: Mater. Sci. Eng., A, 2015, vol. 626, pp. 237-246
S. Šolić, Z. Schauperl, and M. Godec: Proceedings Book of 13th International Foundrymen Conference, 2013, pp. 395–403
[48] Cullity BD. Elements of X-ray diffraction. Reading, MA: Addison-Wesley; 1974. pp. 391-395
G. Roberts, R. Kennedy, and G. Krauss: Tool Steels, 5th edition, ASM, 1998, pp. 99–101
Xiaojun, X., Xu, W., Ederveen, F.H., van der Zwaag, S.: Wear 301 (2013) 89–93
[51] Balaji Narayanaswamy, Peter Hodgson, Hossein Beladi: Wear 350-351 (2016) 155–165
[52] K.H.Z. Gahr, Microstructure and Wear of Materials, Elsevier Science Ltd., Amsterdam, 1987.
[53] P.J. Mutton, J.D. Watson: Wear 1978, vol. 48, pp. 385–398.
[54] L.Q. Xu, N.F. Kennon: Wear, 1991, vol. 148, pp. 101–112.
A. Molinari, M. Pellizzari, S. Gialanella, G. Straffelini and K. H. Stiasny: Proceedings of Conference on Advances Materials Processes Technologies, 1999, pp. 1461–69.
Berrahmoune, M.R., Berveiller, S., Inal, K., Moulin, A., Patoor, E.: Mater. Sci. Eng. A, 2004, vol. 378, pp. 304–307
[57] J.D. Gates: Wear, 1998, vol. 214, pp. 139–146
[58] M.M. Kruschov, Wear, 1974, vol. 28, pp. 69–88.
[59] R.C.D. Richardson: Wear, 1968, vol. 11, pp. 245–345
[60] R.A. Martínez: Eng. Fract. Mech., 2010, vol. 77, pp. 2749–2762
[61] G. Francucci, J. Sikora, R. Dommarco: Mater. Sci. Eng., A, 2008, vol. 485, pp. 46–54
Author information
Authors and Affiliations
Corresponding author
Additional information
Manuscript submitted October 8, 2015.
Rights and permissions
About this article
Cite this article
Šolić, S., Godec, M., Schauperl, Z. et al. Improvement in Abrasion Wear Resistance and Microstructural Changes with Deep Cryogenic Treatment of Austempered Ductile Cast Iron (ADI). Metall Mater Trans A 47, 5058–5070 (2016). https://doi.org/10.1007/s11661-016-3659-4
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11661-016-3659-4