Skip to main content

Advertisement

Log in

Structure–Property Correlation in Fe-Al2O3 In Situ Nanocomposite Synthesized by High-Energy Ball Milling and Spark Plasma Sintering

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In the present study, Fe-10 vol pct Al2O3 in situ nanocomposite has been derived by high-energy ball milling of Fe2O3-Fe-Al powder mixture followed by the consolidation using spark plasma sintering (SPS). The consolidated nanocomposite has bimodal-grained structure consisting of nanometer- and submicron-sized Fe grains along with nanometer-sized Al2O3, and Fe3O4 particles. The mechanical property analysis reveals that compressive yield strength of Fe-10 vol pct Al2O3 nanocomposite is 2100 MPa which is nearly two times higher than that of monolithic Fe processed by Mechanical Milling and SPS. The strengthening contributions obtained from matrix, grain size, and particles in the synthesized nanocomposite have been calculated theoretically, and are found to be matching well with the experimental strength levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig.7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. R. Casati and M. Vedani, Metals, 4 (2014) p. 65–83.

    Article  Google Scholar 

  2. B.S. Murty and S. Ranganathan, Int. Mater. Rev. 43 (1998) p. 101–41.

    Article  Google Scholar 

  3. P. Matteazzi and G. Le Caer, J. Am. Cerm. Soc. 75 (1992) p.2749–53.

    Article  Google Scholar 

  4. G.B. Schaffer and P.G. McCormick, Metall. Mater. Trans. A 21 (1990) p.2789–94.

    Article  Google Scholar 

  5. X. Shengqi, Q. Xiaoyan, M. Mingliang, Z. Jingen, Z. Xiulin and W. Xiaotian, J. Alloys Comp. 268 (1998) p.211–4.

    Article  Google Scholar 

  6. D.Y. Ying and D.L. Zhang, Mater. Sci. Eng. A 286 (2000) p.152–6.

    Article  Google Scholar 

  7. D. Oleszak and M. Krasnowski, Mater. Sci. Forum 360-362 (2001) p.235–40.

    Article  Google Scholar 

  8. D. Oleszak, J. Mater. Sci. 39 (2004) p.5169–74.

    Article  Google Scholar 

  9. J. Li, F. Li and K. Hu, J. Mater. Proc. Tech. 147 (2004) p.236–40.

    Article  Google Scholar 

  10. S.J. Hwang and J.H. Lee, Mater. Sci. Eng. A405 (2005) p.140–6.

    Article  Google Scholar 

  11. T.Venugopal, K. Prasad Rao and B.S. Murty, Mater. Sci. Eng. A 393 (2005) p.382–6.

    Article  Google Scholar 

  12. B.S.B. Reddy, K. Rajasekhar, M. Venu, J.J.S. Dilip, S. Das and K. Das, J. Alloys. Compd. 465 (2008) p.97–105.

    Article  Google Scholar 

  13. J.B. Fogagnolo, E.M.J.A. Pallone, D.R. Martin, C.S. Kiminami, C. Bolfarini and W.J. Botta, J. Alloys. Compd. 471 (2009) p.448–52.

    Article  Google Scholar 

  14. S.Z. Anvari, F. Karimzadeh and M.H Enayati, J. Alloys. Compd. (2009) 477 p. 178–81.

    Article  Google Scholar 

  15. V. Udhayabanu, K.R. Ravi, V. Vinod, B.S. Murty Intermetallics, 18(3) (2010) p 353–8.

    Article  Google Scholar 

  16. V. Udhayabanu, K. R. Ravi, K. Murugan, D. Sivaprahasam and B. S. Murty Metallurgical and Materials Transactions A, 2011, vol. 42(7), 2085-93.

    Article  Google Scholar 

  17. V. Udhayabanu, K. R. Ravi, and B. S. Murty Journal of Alloys and Compounds 509S (2011) S223–8.

    Article  Google Scholar 

  18. V. Udhayabanu, K.R. Ravi, B.S. Murty. Mater. Sci. Eng. A, 585 (2013) p 379-86.

    Article  Google Scholar 

  19. M. P. Horvath and L. Takacs. IEEE Trans. magnetic, 28 (1992) p. 3186–8.

    Article  Google Scholar 

  20. L. Takacs, Mater. Lett. 13 (1992) p.119–24.

    Article  Google Scholar 

  21. P. Matteazzi, F Miani and D. Basset, Nanostruct. Mater. 2 (1993) p. 355–60.

    Article  Google Scholar 

  22. P.M. Botta, R.C. Mercader, E.F. Aglietti and J.M. Porto Lopez, Scr. Mater. 48 (2003) p.1093–8.

    Article  Google Scholar 

  23. K. Isonishi, M. Hashii and K. Ameyama, JSME International Journal Series A 49(2) (2006) p.229–36.

    Article  Google Scholar 

  24. K.R.Ravi, A. Murugesan, V.Udhayabanu, R. Subramanian and B.S.Murty Mater. Sci. Forum 710 (2012) p 291–6.

    Article  Google Scholar 

  25. M. Khodaei, M. H. Enayati and E.F. Karimzadeh, J. Mater. Sci. 43 (2008) p.132–8.

    Article  Google Scholar 

  26. R. Orrù, R. Licheri, A. M. Locci, A. Cincotti, G. Cao, Mater. Sci. Engg: R. 63 (2009) p 127 – 287.

    Article  Google Scholar 

  27. B. Srinivasarao, K. Oh-ishi, T. Ohkubo, T. Mukai and K. Hono, Scr. Mater. 58 (2008) 759-62.

    Article  Google Scholar 

  28. K. Oh-ishi, H.W. Zhang, T. Ohkubo and K. Hono, Mater. Sci. Eng. A 456 (2007) p.20–7

    Article  Google Scholar 

  29. Y.Long, T.Wang, H.Y.Zhang, X.L.Huang, Mater. Sci. Eng. A 608 (2014) p.82-9.

    Article  Google Scholar 

  30. D. Tingaud, P. Jenei, A. Krawczynska, F.Mompiou, J. Gubicza, G. Dirras, Mater. Char. 99 (2015) p 118–27

    Article  Google Scholar 

  31. Z. Li, Z. Lua, R. Xiea, C. Lua, C. Liu, Mater. Sci. Eng. A 660 (2016) p.52-60.

    Article  Google Scholar 

  32. T.H. De Keijser, J.I. Langford, E.J. Mittemeijer and A.B.P. Vogel, J.Appl. Crys., 15 (1982) p.308–14.

    Article  Google Scholar 

  33. I. Cvijovic, M. Vilotijevic and T.J.Milan, Mater. Char. 57 (2006) p. 94–9.

    Article  Google Scholar 

  34. G. Ji, T. Grosdidier, N. Bozzolo and S. Launois, Intermetallics 15 (2007) p.108–18.

    Article  Google Scholar 

  35. D. Jia, K.T. Ramesh and E. Ma, Acta Mater. 51 (2003) p.3495–509.

    Article  Google Scholar 

  36. J.E. Carsley, W.W. Milligan, S.A. Hackney and E.C. Aifantis, Metall. Mater. Trans. A 26 (1995) p.2479–81.

    Article  Google Scholar 

  37. J. Rawers, R. Krabbe and N. Duttlinger, Mater. Sci. Eng. A 230 (1997) p.139–45.

    Article  Google Scholar 

  38. A. Munitz, Z. Livne, J.C. Rawers, J.S. Adams and R.J. Fields, Nanostruct. Mater. 11(2) (1999) p.159–77.

    Article  Google Scholar 

  39. B.Q. Han, E.J. Lavernia and F.A. Mohamed, Metall. Mater. Trans. A 34 (2003) p.71–83.

    Article  Google Scholar 

  40. Q. Wei, L. Kecskes, T. Jiao, K.T. Hartwig, K.T. Ramesh and E. Ma, Acta Mater. 52 (2004) p.1859–69.

    Article  Google Scholar 

  41. J.S.C. Jang, and C.C. Koch, Scr. Metall. Mater., 24 (1990) p.1599–604.

    Article  Google Scholar 

  42. M. Zhu and H.J. Fecht, Nanostruct.Mater. 6 (1995) p.921–4.

    Article  Google Scholar 

  43. G.E. Fougere, J.R. Weertman and R.W. Siegel, Nanostruct. Mater. 5 (1995) p.127–34.

    Article  Google Scholar 

  44. J. Rawers, G. Slavens, D. Govier, D. Dogan and R. Doan, Metall. Mater. Trans. A 27 (1996) p.3126–34.

    Article  Google Scholar 

  45. R.K. Guduru, R.O. Scattergood, C.C. Koch, K.L. Murty, S. Guruswamy and M.K. McCarter, Scripta Mater.54 (2006) p.1879–83.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. R. Ravi.

Additional information

Manuscript submitted April 19, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Udhayabanu, V., Ravi, K.R. & Murty, B.S. Structure–Property Correlation in Fe-Al2O3 In Situ Nanocomposite Synthesized by High-Energy Ball Milling and Spark Plasma Sintering. Metall Mater Trans A 47, 5223–5233 (2016). https://doi.org/10.1007/s11661-016-3627-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3627-z

Keywords

Navigation