Metallurgical and Materials Transactions A

, Volume 47, Issue 8, pp 3785–3789 | Cite as

Simultaneous Grain Growth and Grain Refinement in Bulk Ultrafine-Grained Copper under Tensile Deformation at Room Temperature

  • Hailiang YuEmail author
  • Cheng Lu
  • Anh Kiet Tieu
  • Huijun LiEmail author
  • Ajit Godbole
  • Charlie Kong
  • Xing Zhao


Grain growth and grain refinement behavior during deformation determine the strength and ductility of ultrafine-grained materials. We used asymmetric cryorolling to fabricate ultrafine-grained copper sheets with an average grain width of 230 nm and having a laminate structure. The sheets show a high-true failure strain of 1.5. Observation of the microstructure at the fracture surface reveals that ultrafine laminate-structured grains were simultaneously transformed into both equiaxed nanograins and coarse grains under tensile deformation at room temperature.


Shear Band Severe Plastic Deformation Tensile Deformation Boundary Migration High Pressure Torsion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Supported by URC small grant at the University of Wollongong and the Open Research Fund of Key Laboratory of High Performance Complex Manufacturing, Central South University.

Supplementary material

11661_2016_3573_MOESM1_ESM.jpg (2.1 mb)
Supplementary material 1 (JPEG 2116 kb) Fig. S1 TEM image of grains distribution near fracture surface of Cu sheet fabricated by cryorolling.
11661_2016_3573_MOESM2_ESM.jpg (2.7 mb)
Supplementary material 2 (JPEG 2802 kb) Fig. S2 Detail of grain refinement and grain growth near fracture surface of Cu sheet fabricated by cryorolling.


  1. 1.
    R.O. Ritchie: Nat. Mater., 2011, vol. 10, pp. 817–22.CrossRefGoogle Scholar
  2. 2.
    K.S. Kumar, H. Van Swygenhoven, S. Suresh: Acta Mater., 2003, vol. 51, pp. 5743–74.CrossRefGoogle Scholar
  3. 3.
    Y.H. Zhao, X.Z. Liao, S. Cheng, E. Ma, Y.T. Zhu: Adv. Mater., 2006, vol. 18, pp. 2280–83.CrossRefGoogle Scholar
  4. 4.
    K. Lu, L. Lu, S. Suresh: Science, 2009, vol. 324, pp. 349–52.CrossRefGoogle Scholar
  5. 5.
    H. Kou, J. Lu, Y. Li: Adv. Mater., 2014, vol. 26, pp. 5518–24.CrossRefGoogle Scholar
  6. 6.
    I.A. Ovid’ko, T.G. Langdon: Rev. Adv. Mater. Sci., 2012, vol. 30, pp. 103–11.Google Scholar
  7. 7.
    K. Lu: Science, 2014, vol. 345, pp. 1455–56.CrossRefGoogle Scholar
  8. 8.
    Y. Lin, H. Wen, Y. Li, B. Wen, W. Liu, E.J. Lavernia: Acta Mater., 2015, vol. 82, pp. 304–15.CrossRefGoogle Scholar
  9. 9.
    M. Legros, D.S. Gianola, K.J. Hemker: Acta Mater., 2008, vol. 56, pp.2280–93.CrossRefGoogle Scholar
  10. 10.
    M. Jin, A.M. Minor, E.A. Stach, J.W. Morris Jr: Acta Mater., 2004, vol. 52, pp. 5381–87.CrossRefGoogle Scholar
  11. 11.
    F. Mompiou, D. Caillard, M. Legros: Acta Mater., 2009, vol. 57, pp. 2198–2209.CrossRefGoogle Scholar
  12. 12.
    P.A. Romero, T.T. Järvi, N. Beckmann, M. Mrovec, M. Moseler: Phys. Rev. Lett., 2014, vol. 113, 036101.CrossRefGoogle Scholar
  13. 13.
    C.C.F. Kwan, Z. Wang: Philos. Mag., 2013, vol. 93, pp. 1065–79.CrossRefGoogle Scholar
  14. 14.
    S. Brandstetter, K. Zhang, A. Escuadro, J.R. Weertman, H. Van Swygenhoven: Scr. Mater., 2008, vol. 58, pp. 61–64.CrossRefGoogle Scholar
  15. 15.
    X.Z. Liao, A.R. Kilmametov, R.Z. Valiev, H.S. Gao, X.D. Li, A.K. Mukherjee: Appl. Phys. Lett., 2006, vol. 88, 021909.CrossRefGoogle Scholar
  16. 16.
    Y.B. Wang, J.C. Ho, X.Z. Liao, H.Q. Li, S.P. Ringer, Y.T. Zhu: Appl. Phys. Lett., 2009, vol. 94, 011908.CrossRefGoogle Scholar
  17. 17.
    E.C. Moreno-valle, M.A. Monclus, J.M. Molina-aldareguia, N. Enikeev, I. Sabirov: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2399–2408.CrossRefGoogle Scholar
  18. 18.
    N. Takata, S.H. Lee, N. Tsuji: Mater. Lett., 2009, vol. 63, pp. 1757–60.CrossRefGoogle Scholar
  19. 19.
    L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, K. Lu: Science, 2004, vol. 304, pp.422–26.CrossRefGoogle Scholar
  20. 20.
    Y. Champion, Y. Bréchet: Adv. Eng. Mater., 2010, vol. 12, pp. 798–802.CrossRefGoogle Scholar
  21. 21.
    Y.J. Li, X.H. Zeng, W. Blum: Acta Mater., 2004, vol. 52, pp. 5009–18.CrossRefGoogle Scholar
  22. 22.
    H.L. Yu, K. Tieu, C. Lu, X. Liu, M. Liu, A. Godbole, C. Kong, Q.H. Qin: Sci. Rep., 2015, vol. 5, 9568.CrossRefGoogle Scholar
  23. 23.
    H. Wen, Y. Zhao, T.D. Topping, D. Ashford, R.B. Figueiredo, C. Xu, T.G. Langdon, E.J. Lavernia: Adv. Eng. Mater., 2012, vol. 14, pp. 185–95.CrossRefGoogle Scholar
  24. 24.
    X.Z. Liao, Y.H. Zhao, Y.T. Zhu, R.Z. Valiev, D.V. Gunderov: J. Appl. Phys., 2004, vol. 96, pp. 636–40.CrossRefGoogle Scholar
  25. 25.
    X.Z. Liao, Y.H. Zhao, S.G. Srinivasan, Y.T. Zhu, R.Z. Valiev, D.V. Gunderov: Appl. Phys. Lett., 2004, vol. 84, pp. 592–94.CrossRefGoogle Scholar
  26. 26.
    X.C. Liu, H.W. Zhang, K. Lu: Science, 2013, vol. 342, pp. 337–40.CrossRefGoogle Scholar
  27. 27.
    L. Razak, T. Yamaguchi, S. Akahori, H. Hashimoto, K. Ueno: Jpn J. Appl. Phys., 2012, vol. 51, 05EA04.CrossRefGoogle Scholar
  28. 28.
    R.H. Li, Z.J. Zhang, P. Zhang, Z.F. Zhang: Acta Mater., 2013, vol. 61, pp. 5857–68.CrossRefGoogle Scholar
  29. 29.
    H. Bahmanpour, A. Kauffmann, M.S. Khoshkhoo, K.M. Youssef, S. Mula, J. Freudenberger, J. Eckert, R.O. Scattergood, C.C. Koch: Mater. Sci. Eng. A, 2011, vol. 529, pp. 230–36.CrossRefGoogle Scholar
  30. 30.
    S.J. Xie, P.K. Liaw, H. Choo: J. Mater. Sci., 2006, vol. 41, pp. 6328–32.CrossRefGoogle Scholar
  31. 31.
    J.A. Sharon, H.A. Padilla, B.L. Boyce: J. Mater. Res., 2013, vol. 28, pp. 1539–52.CrossRefGoogle Scholar
  32. 32.
    H. Wen, R.K. Islamgaliev, K.M. Nesterov, R.Z. Valiev, E.J. Lavernia: Philos. Mag. Lett., 2013, vol. 93, pp. 481–89.CrossRefGoogle Scholar
  33. 33.
    Y.M. Wang, M.W. Chen, F.H. Zhou, E. Ma: Nature, 2002, vol. 419, pp. 912–15.CrossRefGoogle Scholar
  34. 34.
    H.L. Yu, K. Tieu, S. Hadi, C. Lu, A. Godbole, C. Kong: Metall. Mater. Trans. A, 2015, vol. 46A, pp. 869–79.CrossRefGoogle Scholar
  35. 35.
    A.J. Haslam, D. Moldovan, V. Yamakov, D. Wolf, S.R. Phillpot, H. Gleiter, Acta Mater., 2003, vol. 51, pp. 2097–112.CrossRefGoogle Scholar
  36. 36.
    H.L. Yu, K. Tieu, C. Lu, Y. Lou, X. Liu, A. Godbole, C. Kong: Int. J. Damage Mech., 2014, vol. 23, pp. 1077–95.CrossRefGoogle Scholar
  37. 37.
    J.W. Cahn, Y. Mishin, A. Suzuki: Acta Mater., 2006, vol. 54, pp. 4953-75.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  1. 1.School of Mechanical, Materials & Mechatronics EngineeringUniversity of WollongongWollongongAustralia
  2. 2.Electron Microscope UnitUniversity of New South WalesSydneyAustralia
  3. 3.State Key Laboratory of High Performance Complex ManufacturingCentral South UniversityChangshaChina

Personalised recommendations