Metallurgical and Materials Transactions A

, Volume 47, Issue 7, pp 3580–3596 | Cite as

Designing the Color of Hot-Dip Galvanized Steel Sheet Through Destructive Light Interference Using a Zn-Ti Liquid Metallic Bath

  • Gabor Levai
  • Melinda Godzsák
  • Tamas I. Török
  • Jozsef Hakl
  • Viktor Takáts
  • Attila Csik
  • Kalman Vad
  • George Kaptay


The color of hot-dip galvanized steel sheet was adjusted in a reproducible way using a liquid Zn-Ti metallic bath, air atmosphere, and controlling the bath temperature as the only experimental parameter. Coloring was found only for samples cooled in air and dipped into Ti-containing liquid Zn. For samples dipped into a 0.15 wt pct Ti-containing Zn bath, the color remained metallic (gray) below a 792 K (519 °C) bath temperature; it was yellow at 814 K ± 22 K (541 °C ± 22 °C), violet at 847 K ± 10 K (574 °C ± 10  °C), and blue at 873 K ± 15 K (600 °C ± 15 °C). With the increasing bath temperature, the thickness of the adhered Zn-Ti layer gradually decreased from 52 to 32 micrometers, while the thickness of the outer TiO2 layer gradually increased from 24 to 69 nm. Due to small Al contamination of the Zn bath, a thin (around 2 nm) alumina-rich layer is found between the outer TiO2 layer and the inner macroscopic Zn layer. It is proven that the color change was governed by the formation of thin outer TiO2 layer; different colors appear depending on the thickness of this layer, mostly due to the destructive interference of visible light on this transparent nano-layer. A complex model was built to explain the results using known relationships of chemical thermodynamics, adhesion, heat flow, kinetics of chemical reactions, diffusion, and optics. The complex model was able to reproduce the observations and allowed making predictions on the color of the hot-dip galvanized steel sample, as a function of the following experimental parameters: temperature and Ti content of the Zn bath, oxygen content, pressure, temperature and flow rate of the cooling gas, dimensions of the steel sheet, velocity of dipping the steel sheet into the Zn-Ti bath, residence time of the steel sheet within the bath, and the velocity of its removal from the bath. These relationships will be valuable for planning further experiments and technologies on color hot-dip galvanization of steel by Zn-Ti alloys.


  1. 1.
    A.R. Marder: Prog. Mater. Sci., 2000, vol.45, pp. 191–271CrossRefGoogle Scholar
  2. 2.
    A. Semoroz, L. Strezov, and M. Rappaz: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2695–701CrossRefGoogle Scholar
  3. 3.
    A. Szabo, E. Denes: Mater. Sci. Forum, 2003, vol. 414-415, pp. 45-50CrossRefGoogle Scholar
  4. 4.
    F.M.Bellhouse, A.I.M.Mertense, J.R.McDermid: Mater. Sci. Eng. A. 2007, vol. 463, pp. 147-56CrossRefGoogle Scholar
  5. 5.
    S.Kaboli, J.R.McDermid: Metall. Mater. Trans. A., 2014, vol. 45A, pp. 3938-53CrossRefGoogle Scholar
  6. 6.
    H.Yang, S.Zhang, J.Li, Y.Liu, H.Wang: Surf. Coat. Technol. 2014, vol. 240, pp. 269-74CrossRefGoogle Scholar
  7. 7.
    S.M.A. Shibli, B.N.Meena, R.Remya: Surf. Coat. Technol, 2015, vol. 262, pp. 210-15CrossRefGoogle Scholar
  8. 8.
    G.Liu, J.Xing, S.Ma, Y.He, H.Fu, Y.Gao, Y.Wang, Y.Wang: Metall. Mater. Trans. A, 2015, vol.46, pp. 1900-07CrossRefGoogle Scholar
  9. 9.
    Y.Wang, J.Zeng: Mater. Design: 2015, vol. 69, pp. 64-69CrossRefGoogle Scholar
  10. 10.
    M.Panjan, M.Klanjsej Gunde, P.Panjan, M.Cekada: Surf. Coat. Technol., 2014, vol. 254, pp. 65-72CrossRefGoogle Scholar
  11. 11.
    J.Corredor, C.P.Bergmann, M.Pereira, L.F.P.Dick: Surf. Coat. Technol. 2014, vol. 245, pp. 125-32CrossRefGoogle Scholar
  12. 12.
    D.P.Adams, R.D.Murphy, D.J.Saiz, D.A.Hirschfeld, M.A:Rodriguez, P.G.Kouta, B.H.Jared: Surf. Coat. Technol., 2014, vol. 248, pp. 38-45CrossRefGoogle Scholar
  13. 13.
    R.W. Smyth: US patent 3530013, 1970Google Scholar
  14. 14.
    P. B. Philip, R. Zeliznak: US patent 37783l5, 1971Google Scholar
  15. 15.
    M.Tomita, S.Yamamoto: European patent EP0269005A2, 1987Google Scholar
  16. 16.
    M.Tomita, S.Yamamoto, C. Tominaga, K. Nakayama: British patent GB1243562, 1991Google Scholar
  17. 17.
    Q. C. Le, J.Z. Cui: Chin. J. Nonferr. Met., 1998, vol. 8, pp. 98-102Google Scholar
  18. 18.
    Q. C. Le, J. Z. Cui: Acta Metall. Sin., 1999, vol. 12, pp. 1217-22Google Scholar
  19. 19.
    Q. C. Le, J.Z. Cui, C.H. Hou: Chin. J. Nonferr. Met., 2000, vol. 10, pp. 388- 94Google Scholar
  20. 20.
    Q.C. Le, J.Z. Cui: Surf. Eng., 2008, vol. 24, pp. 57-62CrossRefGoogle Scholar
  21. 21.
    G. Lévai, M. Godzsák, A. Ender, R. Márkus, T.I. Török: Mater. Sci. Forum, 2013, vol. 729, pp. 61-67CrossRefGoogle Scholar
  22. 22.
    Y.Wang, J.Zheng: Surf. Coat. Technol., 2014, vol. 245, pp. 55-65CrossRefGoogle Scholar
  23. 23.
    J.Emsley: The Elements. Clarendon Press, Oxford, 1989Google Scholar
  24. 24.
    T.Iida, R.I.L.Guthrie. The Physical Properties of Liquid Metals, Clarendon Press, Oxford, 1993Google Scholar
  25. 25.
    I.Barin. Thermochemical Properties of Pure Substances, VCh, 1993Google Scholar
  26. 26.
    T.B. Massalski ed.: Binary Alloy Phase Diagrams, 2nd ed., 3 volumes, ASM International, Materials Park, 1990Google Scholar
  27. 27.
    F.R.deBoer, R.Boom, W.C.M.Mattens, A.R.Miedema: Cohesion in Metals, North-Holland, Amsterdam, 1988Google Scholar
  28. 28.
    G.Kaptay: Calphad 2004, vol.28, pp. 115-24CrossRefGoogle Scholar
  29. 29.
    G.Kaptay: Metall. Mater. Trans. A, 2012, vol. 43A, pp. 531-43CrossRefGoogle Scholar
  30. 30.
    D.R.Poirier, G.H.Geiger: Transport Phenomena in Materials Processing, TMS, Warrendale, 1994Google Scholar
  31. 31.
    G.V.Samsonov (ed.): Fiziko-khimicheskie svoistva okislov—Moskva, Metallurgiia, 1978Google Scholar
  32. 32.
    B.Predel: Phase Equilibria, Crystallographic and Thermodynamic Data of Binary Alloys, vol 5 of group IV of Landolt-Börnstein Handbook, Springer-Verlag, Berlin, 1991-97Google Scholar
  33. 33.
    G.Kaptay: Materials equilibria in maco-, micro- and nano-system. Raszter Nyomda, 2011Google Scholar
  34. 34.
    G.Kaptay: J. Mater. Sci., 2005, vol. 40, pp. 2125-35CrossRefGoogle Scholar
  35. 35.
    G.Kaptay: J. Disp. Sci. Technol., 2012, vol. 33, pp. 130-40CrossRefGoogle Scholar
  36. 36.
    G.Kaptay: Mater. Sci. Forum, 2005, vol. 473-474, pp. 1-10CrossRefGoogle Scholar
  37. 37.
    G.Kaptay, E.Báder, L.Bolyán: Mater. Sci. Forum, 2000, vol. 329-330, pp. 151-56CrossRefGoogle Scholar
  38. 38.
    Y.S.Touloukian, R.K.Kirby, R.E.Taylor, T.Y.R.Lee: Thermal Expansion, IFI/Plenum, NY, 1977CrossRefGoogle Scholar
  39. 39.
    G.Kaptay: Int. J. Mater Res., 2008, vol. 99, pp. 14-17CrossRefGoogle Scholar
  40. 40.
    W. Chen, L. Zhang, Y. Du, B. Huang: Phil. Mag., 2014, vol. 94, pp. 1552-77CrossRefGoogle Scholar
  41. 41.
    G. Ábrahám ed.: Optics, Panem, McGraw-Hill, Budapest, 1998Google Scholar
  42. 42.
    S. Van Gils, P.Mas, E.Stijns, H.Terryn: Surf. Coat. Technol., 2004, vol. 185, pp. 303-10CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  • Gabor Levai
    • 1
    • 2
  • Melinda Godzsák
    • 1
  • Tamas I. Török
    • 1
  • Jozsef Hakl
    • 3
  • Viktor Takáts
    • 3
  • Attila Csik
    • 3
  • Kalman Vad
    • 3
  • George Kaptay
    • 1
    • 4
  1. 1.University of MiskolcEgyetemvarosMiskolcHungary
  2. 2.Innocenter Nonprofit LtdMiskolcHungary
  3. 3.Institute for Nuclear Research (MTA ATOMKI)DebrecenHungary
  4. 4.Bay Zoltan LtdMiskolcHungary

Personalised recommendations