Skip to main content

Advertisement

Log in

On the Crystallization of Compacted and Chunky Graphite from Liquid Multicomponent Iron-Carbon-Silicon-Based Melts

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Extensive SEM work was carried out on deep-etched specimens to reveal the evolution of compacted and chunky graphite in magnesium-modified multicomponent Fe-C-Si alloys during early solidification and at room temperature. The findings of this research were then integrated in the current body of knowledge to produce an understanding of the crystallization of compacted and chunky graphite. It was confirmed that growth from the liquid for both compacted and chunky graphite occurs radially from a nucleus, as foliated crystals and dendrites. The basic building blocks of the graphite aggregates are hexagonal faceted graphite platelets with nanometer height and micrometer width. Thickening of the platelets occurs through growth of additional graphene layers nucleated at the ledges of the graphite prism. Additional thickening resulting in complete joining of the platelets may occur from the recrystallization of the amorphous carbon that has diffused from the liquid through the austenite, once the graphite aggregate is enveloped in austenite. With increasing magnesium levels, the foliated graphite platelets progressively aggregate along the c-axis forming clusters. The clusters that have random orientation, eventually produce blocky graphite, as the spaces between the parallel platelets disappear. This is typical for compacted graphite irons and tadpole graphite. The chunky graphite aggregates investigated are conical sectors of graphite platelets stacked along the c-axis. The foliated dendrites that originally develop radially from a common nucleus may aggregate along the c-axis forming blocky graphite that sometimes exhibits helical growth. The large number of defects (cavities) observed in all graphite aggregates supports the mechanism of graphite growth as foliated crystals and dendrites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  1. 1 G.F. Geier, W. Bauer, B.J. McKay, P. Schumacher, Microstructure transition from lamellar to compacted graphite using different modification agents, Mat. Sci. Eng. A 413-414 (2005) 339-345.

    Article  Google Scholar 

  2. D.K. Bandyopadhyay, D.M. Stefanescu, I. Minkoff and S.K. Biswal: Physical Metallurgy of Cast Iron IV, Tokyo, Mat. Res. Soc. Proc., G. Ohira, T. Kusakawa and E. Niyama, eds., Pittsburgh, 1989, p. 27.

  3. 3 H. Itofuji, H. Uchikawa, Formation Mechanism of Chunky Graphite in Heavy-section Ductile Cast Irons, Trans. AFS 98 (1990) 429-448.

    Google Scholar 

  4. G. Alonso, D.M. Stefanescu, P. Larrañaga, and R. Suarez: Int. J. Cast Metals Res., 2016, DOI:10.1179/1743133615Y.0000000020.

  5. 5 D.M. Stefanescu, G. Alonso, P. Larrañaga, R. Suarez, On the stable eutectic solidification of Iron-Carbon-Silicon alloys, Acta mater. 103 (2016) 103-114.

    Article  Google Scholar 

  6. D.M. Stefanescu L. Dinescu, S. Craciun, M. Popescu, in Proc. 46th Int. Foundry Congress, CIATF Madrid, Spain, 1979, paper 37-1.

  7. 7 A. Velichko, C. Holzapfel, F. Mücklich, 3D Characterization of Graphite Morphologies in Cast Iron, Adv. Eng. Mater. 9(1-2) (2007) 39.

    Article  Google Scholar 

  8. 8 D.M. Stefanescu, F. Martinez, I.G. Chen, Solidification Behavior of Hypoeutectic and Eutectic Compacted Graphite Cast Irons, Chilling Tendency and Eutectic Cells, AFS Trans. 91 (1983) 205-216

    Google Scholar 

  9. 9 X.J. Deng, P.Y. Zhu, Q.F. Liu, Structure and Formation of Vermicular Graphite, AFS Trans. 94 (1986) 927-34

    Google Scholar 

  10. 10 S. I. Karsay, E. Compomanes, Control of Graphite Structure in Heavy Ductile Iron Casting, AFS Trans. 92(1970) 85-92.

    Google Scholar 

  11. 11 P.C. Liu, C.L. Li, D.H. Wu, C.R. Loper, SEM study of chunky graphite in heavy section ductile iron, AFS Trans. 91 (1983). 119-126.

    Google Scholar 

  12. 12 A.N. Roviglione, J.D. Hermida, From flake to nodular: a new theory of morphological modification in gray cast iron, Metall. Mater. Trans. 35B (2004) 313.

    Article  Google Scholar 

  13. 13 D.M. Stefanescu, G. Alonso, P. Larrañaga, E. De la Fuente, R. Suarez, On the crystallization of graphite from liquid iron-carbon-silicon melts, Acta Mater. 107 (2016) 102-126

    Article  Google Scholar 

  14. 14 D.D. Saratovkin, Dendritic Crystallization, Consultants Bureau, New York, NY, 1959

    Google Scholar 

  15. 15 J. Sertucha, J. Lacaze, S. Armendariz, P. Larrañaga, Statistical analysis of the influence of some trace elements on chunky graphite formation in heavy section nodular iron castings, Metall. Mater. Trans. A 44(3) (2013) 1159-1162 DOI 10.1007/s11661-012-1592-8

    Article  Google Scholar 

  16. 16 H. Itofuji, A. Masutani, Nucleation and growth behavior of chunky graphite, Int. J. Cast Metals Res. 14 (2001) 1-14.

    Google Scholar 

  17. D.D. Double, and A. Hellawell: The Metallurgy of Cast Iron, B. Lux, I. Minkoff, and F. Mollard, eds., Georgi Publishing Co., St Saphorin, 1975, pp. 509–28.

  18. 18 S.H. Yoon, S. Lim, S.H. Hong, W. Qiao, D.D. Whitehurst, I. Mochida et al., A conceptual model for the structure of catalytically grown carbon nano-fibers, Carbon 43 (2005) 1828-1838.

    Article  Google Scholar 

  19. 19 D.D. Double, A. Hellawell, The nucleation and growth of graphite-the modification of cast iron, Acta Metall. Mater. 43 (1995) 2435-42.

    Article  Google Scholar 

  20. 20 D.D. Double, A. Hellawell, The structure of flake graphite in Ni-C eutectic alloy, Acta Metall. 17 (1969) 1071- 83.

    Article  Google Scholar 

  21. 21 D.H. St. John, L.M. Hogan, Metallography and growth crystallography of Al3Ti in Al-Ti alloys up to 5 wt% Ti, J. Crystal Growth 46 (1979) 387-98

    Article  Google Scholar 

  22. 22 M.C. Flemings, Solidification Processing, McGraw Hill Series in Materials Science and Engineering, McGraw Hill, New York, NY, 1974.

    Google Scholar 

  23. W. Bollman, and B. Lux B: The Metallurgy of Cast Iron, B. Lux, I. Minkoff, F. Mollard, eds., Georgi Publishing, St. Saphorin, 1975, pp. 462–70.

  24. E. Moumeni, N.S. Tiedje, A. Horsewell, J.H Hattel: A TEM Study on the Microstructure of Fine Flaky Graphite, 52nd International Foundry Conference, Portoroz, Slovenia, 2012

  25. 25 H.M. Muhmond, H. Fredriksson, Relationship between the Trace Elements and Graphite Growth Morphologies in Cast Iron, Metall. Mater. Trans. 45A (2014) 6187-99

    Article  Google Scholar 

  26. 26 K. Theuwissen, J. Lacaze, L. Laffont, Structure of graphite precipitates in cast iron, Carbon (2015) DOI:10.1016/j.carbon.2015.10.066.

    Google Scholar 

  27. 27 S. Amini, R. Abbaschian, Nucleation and growth kinetics of graphene layers from a molten phase Carbon 51 (2013) 110-123.

    Article  Google Scholar 

  28. K.M. Fang, G.C. Wang, X. Wang, L. Huang, and G.D. Deng: in Science and Processing of Cast Iron VIII, Y.X. Li, H.F. Shen, Q.G. Xu, Z.Q. Han, eds., Tsinghua Univ. Press, Beijing, 2006, pp. 181–87.

  29. I. Minkoff, I. Einbinder, Official Exchange Paper—Israel, International Foundry Congress, 1963, pp 139–43

  30. I. Minkoff: in The Physical Metallurgy of Cast Iron, Stockholm, Mat. Res. Soc. Symposia Proc., H. Fredriksson, and M. Hillert, eds., North-Holland, 1985, pp. 37–45.

  31. 31 M. Hamasumi, A newly observed pattern of imperfect graphite spherulite in nodular iron, Trans. JIM, 6 (1965) 234-239.

    Google Scholar 

  32. G.R. Purdy, and M. Audier: in The Physical Metallurgy of Cast Iron, Stockholm, H. Fredriksson and M. Hillert, eds., Mat. Res. Soc. Symposia Proc., North-Holland, 1985, pp. 13-23.

    Google Scholar 

  33. 33 D. Ugarte, Nature, London 359 (1992) 707

    Article  Google Scholar 

  34. J.P. Sadocha, and J.E. Gruzleski: in The Metallurgy of Cast Iron, B. Lux, I. Minkoff, and F. Mollard, eds., Georgi Publishing Co., St Saphorin, 1975, pp. 443-59

    Google Scholar 

Download references

Acknowledgments

The authors wish to acknowledge Caterpillar and Fundiciones Garbi for supplying some of the analyzed samples. Thermal Quality Control Technologies, S.L.U. is also gratefully acknowledged for sharing its facilities for samples acquisition.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. M. Stefanescu.

Additional information

Manuscript submitted January 27, 2016.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stefanescu, D.M., Huff, R., Alonso, G. et al. On the Crystallization of Compacted and Chunky Graphite from Liquid Multicomponent Iron-Carbon-Silicon-Based Melts. Metall Mater Trans A 47, 4012–4023 (2016). https://doi.org/10.1007/s11661-016-3541-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3541-4

Keywords

Navigation