Skip to main content
Log in

The Strength–Grain Size Relationship in Ultrafine-Grained Metals

  • Symposium: Micromechanics of Advanced Materials III in Honor of J.C.M. Li
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Metals processed by severe plastic deformation (SPD) techniques, such as equal-channel angular pressing (ECAP) and high-pressure torsion (HPT), generally have submicrometer grain sizes. Consequently, they exhibit high strength as expected on the basis of the Hall–Petch (H–P) relationship. Examples of this behavior are discussed using experimental data for Ti, Al, and Ni. These materials typically have grain sizes greater than ~50 nm where softening is not expected. An increase in strength is usually accompanied by a decrease in ductility. However, both high strength and high ductility may be achieved simultaneously by imposing high strain to obtain ultrafine-grain sizes and high fractions of high-angle grain boundaries. This facilitates grain boundary sliding, and an example is presented for a cast Al-7 pct Si alloy processed by HPT. In some materials, SPD may result in a weakening even with a very fine grain size, and this is due to microstructural changes during processing. Examples are presented for an Al-7034 alloy processed by ECAP and a Zn-22 pct Al alloy processed by HPT. In some SPD-processed materials, it is possible that grain boundary segregation and other features are present leading to higher strengths than predicted by the H–P relationship.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. H. Gleiter: Acta Mater., 2000, vol. 48, pp. 1- 29.

    Article  Google Scholar 

  2. T.G. Langdon: Acta Mater., 2013, vol. 61, pp. 7035-7059.

    Article  Google Scholar 

  3. E.O. Hall: Proc. Phys. Soc. Lond. B, 1951, vol. 64, pp. 747-753.

    Article  Google Scholar 

  4. N.J. Petch: J. Iron. Steel Inst., 1953, vol. 174, pp. 25-28.

    Google Scholar 

  5. Z. Horita, M. Furukawa, M. Nemoto, A.J. Barnes, and T.G. Langdon: Acta Mater., 2000, vol. 48, pp. 3633 – 3640.

    Article  Google Scholar 

  6. T.G. Langdon: Mech. Mater., 2013, vol. 67, pp. 2-8.

    Article  Google Scholar 

  7. M. Kawasaki and T.G. Langdon: J. Mater. Sci., 2016, vol. 51, pp. 19-32.

    Article  Google Scholar 

  8. A.J. Barnes: J. Mater. Eng. Perform., 2007, vol. 16, pp. 440 – 454.

    Article  Google Scholar 

  9. T.G. Langdon: Acta Metall. Mater., 1994, vol. 42, pp. 2437–2443.

    Article  Google Scholar 

  10. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y.T. Zhu: JOM, 2006, vol. 58, no. 4, pp. 33-39.

    Article  Google Scholar 

  11. M. Kawasaki, N. Balasubramanian, and T.G. Langdon: Mater. Sci. Eng., 2011, vol. A528, pp. 6624–6629.

    Article  Google Scholar 

  12. R.Z. Valiev, D.A. Salimonenko, N.K. Tsenev, P.B. Berbon, and T.G. Langdon: Scr. Mater., 1997, vol. 37, pp.1945–1950.

    Article  Google Scholar 

  13. R.K. Islamgaliev, N.F. Yunusova, R.Z. Valiev, N.K. Tsenev, V.N. Perevezentsev, and T.G. Langdon: Scr. Mater., 2003, vol. 49, pp. 467–472.

    Article  Google Scholar 

  14. R. Kaibyshev, K. Shipilova, F. Musin, and Y. Motohashi: Mater. Sci. Technol., 2005, vol. 21, pp. 408–418.

    Article  Google Scholar 

  15. F. Musin, R. Kaibyshev, Y. Motohashi, and G.Itoh: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2383–2392.

    Article  Google Scholar 

  16. K.T. Park, D.Y. Hwang, Y.K. Lee, Y.K. Kim, and D.H. Shin: Mater. Sci. Eng., 2003, vol. A341, pp. 273–281.

    Article  Google Scholar 

  17. I. Nikulin, R. Kaibyshev, and T. Sakai: Mater Sci. Eng., 2005, vol. A407, pp. 62–70.

    Article  Google Scholar 

  18. S. Komura, M. Furukawa, Z. Horita, M. Nemoto, and T.G. Langdon: Mater Sci. Eng., 2001, vol. A297, pp. 111–118.

    Article  Google Scholar 

  19. S. Komura, Z. Horita, M. Furukawa, M. Nemoto, and T.G. Langdon: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 707–716.

    Google Scholar 

  20. S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita, and T.G. Langdon: Acta Mater., 2005, vol. 50, pp. 553–564.

    Article  Google Scholar 

  21. K. Turba, P. Málek, and M. Cieslar: Mater. Sci. Eng., 2007, vol. A462, pp. 91–94.

    Article  Google Scholar 

  22. R.S. Mishra, R.Z. Valiev, S.X. McFadden, R.K. Islamgaliev, and A.K. Mukherjee: Philos. Mag. A, 2001, vol. 81, pp.37–48.

    Article  Google Scholar 

  23. 23. V.N. Perevezentsev, M.Yu. Shcherban, M.Yu. Murashkin, and R.Z. Valiev: Tech. Phys. Lett., 2007, vol. 33, pp. 648–650.

    Article  Google Scholar 

  24. 24. S.V. Dobatkin, E.N. Bastarache, G. Sakai, T. Fujita, Z. Horita, and T.G. Langdon: Mater. Sci. Eng., 2005, vol. A408, pp. 141–146.

    Article  Google Scholar 

  25. 25. A. Alhamidi and Z. Horita: Mat. Sci. Eng., 2015, vol. A622, pp. 139-145.

    Article  Google Scholar 

  26. C. Xu, S.V. Dobatkin, Z. Horita, and T.G. Langdon: Mater. Sci., Eng., 2009, vol. A500, pp. 170–75.

  27. 27. S. Sabbaghianrad, M. Kawasaki, and T.G. Langdon: J. Mater. Sci., 2012, vol. 47, pp. 7789–7795.

    Article  Google Scholar 

  28. 28. M. Kawasaki, J. Foissey, and T.G. Langdon: Mater. Sci. Eng., 2013, vol. A561, pp.118–125.

    Article  Google Scholar 

  29. 29. G. Sakai, Z. Horita, and T.G. Langdon: Mater. Sci. Eng., 2005, vol. A393, pp. 344–351.

    Article  Google Scholar 

  30. 30. Y. Harai, K. Edalati, Z. Horita, and T.G. Langdon: Acta Mater., 2009, vol. 57, pp. 1147–1153.

    Article  Google Scholar 

  31. 31. R.B. Figueiredo and T.G. Langdon: J. Mater. Sci., 2008, vol. 43, pp. 7366–7371.

    Article  Google Scholar 

  32. 32. Y. Miyahara, Z. Horita, and T.G. Langdon: Mater. Sci. Eng, 2006, vol. A420, pp. 240–244.

    Article  Google Scholar 

  33. 33. M. Mabuchi, H. Iwasaki, K. Yanase, and K. Higashi: Scr. Mater., 1997, vol. 36, pp. 681–686.

    Article  Google Scholar 

  34. 34. M. Mabuchi, K. Ameyama, H. Iwasaki, and K. Higashi: Acta Mater., 1999, vol. 47, pp. 2047–2057.

    Article  Google Scholar 

  35. V.N. Chuvil’deev, T.G. Nieh, M.Yu. Gryaznov, V.I. Kopylov, and A.N. Sysoev: J. Alloys Compd., 2004, vol. 378, pp. 253–57.

  36. 36. K. Yan, Y-S. Sun, J. Bai, and F. Xue: Mater. Sci. Eng., 2011, vol. 528, pp. 1149–1153.

    Article  Google Scholar 

  37. 37. H. Watanabe, T. Mukai, K. Ishikawa, and K. Higashi: Scr. Mater., 2002, vol. 46, pp. 851–856.

    Article  Google Scholar 

  38. V.N. Chuvil’deev, T.G. Nieh, M.Yu. Gryaznov, A.N. Sysoev, and V.I. Kopylov: Scripta Mater., 2004, vol. 50, pp. 861–65.

  39. 39. R.B. Figueiredo and T.G. Langdon: Mater. Sci. Eng., 2006, vol. A430, pp.151–156.

    Article  Google Scholar 

  40. 40. R.B. Figueiredo and T.G. Langdon: Adv. Eng. Mater., 2008, vol. 10, pp. 37–40.

    Article  Google Scholar 

  41. 41. Y. Miyahara, K. Matsubara, Z. Horita, and T.G. Langdon: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1705–1711.

    Article  Google Scholar 

  42. 42. K. Matsubara, Y. Miyahara, Z. Horita, and T.G. Langdon: Acta Mater. 2003, vol. 51, pp. 3073–3084.

    Article  Google Scholar 

  43. 43. M. Furui, C. Xu, T. Aida, M. Inoue, H. Anada, and T.G. Langdon: Mater. Sci. Eng., 2005, vol. A410–411, pp. 439–442

    Article  Google Scholar 

  44. 44. M. Furui, H. Kitamura, H. Anada, and T.G. Langdon: Acta Mater., 2007, vol. 55, pp. 1083– 1091.

    Article  Google Scholar 

  45. 45. S.W. Xu, M.Y. Zheng, S. Kamado, and K. Wu: Mater. Sci. Eng., 2012, vol. A549, pp. 60–68.

    Article  Google Scholar 

  46. 46. Z. Kang, L. Zhu, and J. Zhang: Mater. Sci. Eng., 2015, vol. A633, pp. 59–62.

    Article  Google Scholar 

  47. 47. Y. Harai, M. Kai, K. Kaneko, Z. Horita, and T.G. Langdon: Mater. Trans., 2008, vol. 49, pp. 76–83.

    Article  Google Scholar 

  48. 48. S.A. Torbati-Sarraf and T.G. Langdon: J. Alloys Compd., 2014, vol. 613, pp. 357–363.

    Article  Google Scholar 

  49. 49. M. Kai, Z. Horita, and T.G. Langdon: Mater. Sci. Eng., 2008, vol. A488, pp. 117– 124.

    Article  Google Scholar 

  50. 50. O.B. Kulyasova, R.K. Islamgaliev, A.R. Kil’mametov, and R.Z. Valiev: Phys. Met. Metallogr., 2006, vol. 101, pp. 585–590.

    Article  Google Scholar 

  51. 51. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Prog. Mater. Sci., 2000, vol. 45, pp. 103 -189.

    Article  Google Scholar 

  52. 52. M. Furukawa, Z. Horita, M. Nemoto, and T.G. Langdon: J. Mater. Sci., 2001, vol. 36, pp. 2835 – 2843.

    Article  Google Scholar 

  53. 53. R.Z. Valiev and T.G. Langdon: Prog. Mater. Sci., 2006, vol. 51, pp. 881- 981.

    Article  Google Scholar 

  54. A.P. Zhilyaev and T.G. Langdon: Prog, Mater. Sci., 2008,vol. 53, pp. 893-979.

  55. 55. M. Ebrahimi, H. Gholipour, and F. Djavanroodi: Mater. Sci. Eng., 2016, vol. A650, pp. 1-7.

    Article  Google Scholar 

  56. 56. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R.G. Hong: Scr. Mater., 1998, vol. 39, pp. 1221- 1227.

    Article  Google Scholar 

  57. 57. H.Q. Sun, Y.-N. Shi, M.-X. Zhang, and K. Lu: Acta Mater., 2007, vol. 55, pp. 975-982.

    Article  Google Scholar 

  58. 58. J.Y. Huang, Y.T. Zhu, J.H. Jiang, and T.C. Lowe: Acta Mater., 2001, vol. 49, pp. 1497-1505.

    Article  Google Scholar 

  59. 59. C. Xiao, R.A. Mirshams, S.H. Whang, and W.M. Yin: Mat. Sci. Eng., 2001, vol. A301, pp. 35–43

    Article  Google Scholar 

  60. 60. D.A. Hughes and N. Hansen: Phys. Rev. Lett., 2014, vol. 112, p. 135504.

    Article  Google Scholar 

  61. R.W. Armstrong: in “Ultrafine-Grain Metals”, eds. J.J. Burke and V. Weiss: Proceedings of the 16th Sagamore Army Materials Research Conference, Syracuse University Press, NY, 1970, pp. 1–25.

  62. 62. J.R. Low. Jr. and M Gensamer: Trans. TMS-AIME, 1944, vol. 158, pp. 207-214.

    Google Scholar 

  63. 63. A.H. Cottrell and B.A. Bilby: Proc. Phys. Soc. Lond. 1949, vol. 62, pp. 49-62.

    Article  Google Scholar 

  64. 64. A.H. Cottrell: Trans. TMS-AIME, 1958, vol. 212, pp. 192-203.

    Google Scholar 

  65. 65. K. Prewo, J.C.M. Li, and M. Gensamer: Metall. Trans., 1972, vol. 3, pp. 2262-2269.

    Google Scholar 

  66. 66. V.S. Ananthan and E.O. Hall: Acta Metall. Mater., 1991, vol. 39, pp. 3153-3160.

    Article  Google Scholar 

  67. 67. N. Balasubramanian, J.C.M. Li, and M. Gensamer: Mater. Sci. Eng., 1974, vol. 14, pp. 37-45.

    Article  Google Scholar 

  68. 68. N. Tsuji, Y. Ito, Y. Saito, and Y. Minamino: Scr. Mater., 2002, vol. 47, pp. 893-899.

    Article  Google Scholar 

  69. 69. X.H. An, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, and T.G. Langdon: Scr. Mater., 2012, vol. 66, pp. 227-230.

    Article  Google Scholar 

  70. 70. M. Joshi, Y. Fukuta, S. Gao, N. Park, D. Terada, and N. Tsuji: IOP Conf. Series: Mater. Sci. Eng., 2014, vol. 63, p. 012074.

    Article  Google Scholar 

  71. 71. D. Terada, M. Inoue, H. Kitahara, and N. Tsuji: Mater. Trans., 2008, vol. 49, pp. 41-46.

    Article  Google Scholar 

  72. 72. Z. Li, L. Fu, B. Fu, and A. Shan: Mater. Lett., 2013, vol. 96, pp. 1- 4.

    Article  Google Scholar 

  73. 73. I. Sabirov, Y. Estrin, M.R. Barnett, I. Timokhina, and P.D. Hodgson: Acta Mater., 2008 vol. 56, pp. 2223-2230.

    Article  Google Scholar 

  74. 74. R. Saha, R. Ueji, and N. Tsuji: Scr. Mater., 2013, vol. 68. pp. 813-816.

    Article  Google Scholar 

  75. 75. R.W. Armstrong: Metall. Trans., 2015, DOI: 10.1007/s11661-015-3161-4, on line.

    Google Scholar 

  76. 76. D.H. Lee, I.C. Choi, M.Y. Seok, J. He. Z. Lu, J.Y. Suh, M. Kawasaki, T.G. Langdon, and J.I. Jang: J. Mater. Res., 2015, vol. 30, pp. 2804-2815.

    Article  Google Scholar 

  77. 77. A.V. Sergueeva, V.V. Stolyarov, R.Z. Valiev, and A.K. Mukherjee: Scr. Metall., 2001, vol. 45, pp. 747-752.

    Article  Google Scholar 

  78. 78. V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, and R.Z. Valiev: Mater. Sci. Eng., 2001, vol. A299, pp. 59- 67.

    Article  Google Scholar 

  79. 79. V.V. Stolyarov, Y.T. Zhu, T.C. Lowe, R.K. Islamgaliev, and R.Z. Valiev: Mater. Sci. Eng., 2001, vol. 303, pp. 82-89.

    Article  Google Scholar 

  80. 80. D.A. Konstantinidis and E.C. Aifantis: Nanostruct. Mater., 1998, vol. 10, pp. 1111- 1118.

    Article  Google Scholar 

  81. 81. G.A. Salishchev, R.M. Galeyev, S.P. Malysheva, and M.M. Myshlyaev: Nanostruct. Mater., 1999, vol. 11, pp. 407- 414.

    Article  Google Scholar 

  82. 82. R.W. Armstrong and P.C. Jindal: Trans. TMS-AIME, 1968, vol. 242, p. 2513.

    Google Scholar 

  83. 83. H. Hu and R. S. Cline: Trans. TMS-AIME, 1968, vol. 242, pp. 1013-1024.

    Google Scholar 

  84. 84. C. T. Wang, N. Gao, M.G. Gee, R.J.K. Wood, and T.G. Langdon: J. Mater. Sci., 2013, vol. 48, pp. 4742–4748.

    Article  Google Scholar 

  85. 85. X. Zhao, W. Fu, X. Yang, and T.G. Langdon: Scr. Mater., 2008, vol. 59, pp. 542 – 545.

    Article  Google Scholar 

  86. 86. X. Zhao, X. Yang, X. Liu, X. Wang, and T.G. Langdon: Mater. Sci. Eng., 2010, vol. A527, pp. 6335 – 6339.

    Article  Google Scholar 

  87. 87. Y.G. Ko, D.H. Shin, K.T. Park, and C.S. Lee: Scr. Mater., 2006, vol. 54, pp. 1785- 1789.

    Article  Google Scholar 

  88. 88. G.G. Yapici, I. Karaman, and H.J. Maier: Mater. Sci. Eng., 2006, vol. A434, pp. 294- 302.

    Article  Google Scholar 

  89. 89. V.V. Stolyarov, L. Zeipper, B. Mingler, and M. Zehetbauer: Mater. Sci. Eng., 2008, vol. A476, pp. 98 – 105.

    Article  Google Scholar 

  90. 90. D.H. Kang and T.W. Kim: Mater. Des., 2010, vol. 31, pp. 554- 560.

    Article  Google Scholar 

  91. 91. I. Sabirov, R.Z. Valiev, I.P. Semenova, and R. Pippan: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 727–733.

    Article  Google Scholar 

  92. 92. G. Purcek, G.G. Yapici, I. Karaman, and H.J. Maier: Mater. Sci. Eng,, 2011, vol. A528, pp. 2303- 2308.

    Article  Google Scholar 

  93. 93. Y. Zhang, R.B. Figueiredo, S.N. Alhajeri, J.T. Wang, N. Gao, and T.G. Langdon: Mater. Sci. Eng., 2011, vol. A528, pp. 7708 – 7714.

    Article  Google Scholar 

  94. 94. V.L. Sordi, M. Ferrante, M. Kawasaki, and T.G. Langdon: J. Mater. Sci., 2012, vol. 47, pp. 7870 – 7876.

    Article  Google Scholar 

  95. 95. C.T. Wang, N. Gao, M.G. Gee, R.J.K. Wood, and T.G. Langdon: Wear, 2012, vol. 280, pp. 28-36.

    Article  Google Scholar 

  96. 96. V.V. Stolyarov, Y.T. Zhu, T.C. Lowe, R.K. Islamgaliev, and R.Z. Valiev: Nanostruct. Mater., 1999, vol. 11, pp. 947 – 954.

    Article  Google Scholar 

  97. 97. V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, and R.Z. Valiev: Mater. Sci. Eng., 2003, vol. A343, pp. 43-50.

    Article  Google Scholar 

  98. 98. I.P. Semenova, R.Z. Valiev, E.B. Yakushina, G.H. Salimgareeva, and T.C. Lowe: J. Mater. Sci., 2008, vol. 43, pp. 7354-7359.

    Article  Google Scholar 

  99. 99. R.K. Islamgaliev, V.U. Kazyhanov, L.O. Shestakova, A.V. Sharafutdinov, and R.Z. Valiev: Mater. Sci. Eng, 2008, vol. A493, pp. 190-194.

    Article  Google Scholar 

  100. 100. G. Purcek, O. Saray, O. Kul, I. Karaman, G.G. Yapici, M. Haouaoui, and H.J. Maier: Mater. Sci. Eng., 2009, vol. A517, pp. 97-104.

    Article  Google Scholar 

  101. 101. S. Faghihi, D. Li, and J.A. Szpunar: Nanotechnol., 2010, vol. 21, p. 485703.

    Article  Google Scholar 

  102. P. Luo, D.T. McDonald, W. Xu, S. Palanisamy, M.S. Dargusch, and K. Xia: Scripta Mater. vol. 66, pp. 785–88.

  103. 103. P. Bazarnik, Y. Huang, M. Lewandowska, and T.G. Langdon: Mater. Sci. Eng., 2015, vol. A626, pp. 9-15.

    Article  Google Scholar 

  104. 104. I. Sabirov, M.Yu. Murashkin, and R.Z. Valiev: Mater. Sci. Eng., 2013, vol. A560, pp. 1- 24.

    Article  Google Scholar 

  105. 105. N. Hansen: Scr. Mater., 2004, vol. 51, pp. 801-806.

    Article  Google Scholar 

  106. 106. M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, and T.G. Langdon: Philos. Mag. A 1998, vol. 78, pp. 203-215.

    Article  Google Scholar 

  107. 107. M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, and T.G. Langdon : Acta Mater., 1996, vol. 44, pp. 4619-4629.

    Article  Google Scholar 

  108. N. Tsuji: in Nanostructured Materials by High Pressure Severe Plastic Deformation, Y.T. Zhu and V. Varyukhin, eds., Springer, Dordrecht, Netherlands, 2006, pp. 227–234.

  109. T. Shanmugasundaram, M. Heilmaier, B.S. Murty, V. Subramanya Sarma: Mater. Sci. Eng., 2010, vol. A527, pp. 7821–25.

  110. 110. R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, and T.C. Lowe: J. Mater. Res., 2002, vol. 17, pp. 5-8.

    Article  Google Scholar 

  111. 111. R.Z. Valiev: Nature, 2011, vol. 419, pp. 887-889.

    Article  Google Scholar 

  112. 112. T. Suo, Y. Li, F. Zhao, Q. Deng, and K. Xie: Mater. Res. Innov. 2011, vol. 15, pp. 69-72

    Article  Google Scholar 

  113. 113. I. Semenova, G. Salimgareeva, G. Da Costa, W. Lefebvre, and R. Z. Valiev: Adv. Eng. Mater., 2010, vol.12, pp. 803-807

    Article  Google Scholar 

  114. 114. A.V. Polykov, I. P. Semenova, R. Z. Valiev, Y. Huang, and T.G. Langdon: MRS Comm. 2013, vol. 3, pp. 249-253.

    Article  Google Scholar 

  115. 115. N. Maury, N.X. Zhang, Y. Huang, A.P. Zhilyaev, and T.G. Langdon: Mater. Sci. Eng., 2015, vol. A638, pp. 174-182.

    Article  Google Scholar 

  116. 116. Y. Huang, M. Lemang, N.X. Zhang, P.H.R. Pereira, and T.G. Langdon: Mater. Sci. Eng., 2016, vol. A655, pp. 60-69.

    Article  Google Scholar 

  117. 117. O. Andreau, J. Gubicza, N.X. Zhang, Y. Huang, P. Jenei, and T.G. Langdon: Mater. Sci. Eng., 2014, vol. A615, pp. 231-239.

    Article  Google Scholar 

  118. 118. K. Edalati, T. Furuta, T. Daio, S. Kuramoto, and Z. Horita: Mater. Res. Lett., 2015, vol. 3, pp. 197-202.

    Article  Google Scholar 

  119. 119. Y. Waseda, S. Ueno, M. Hagiwara, and K.T. Aust: Prog. Mater. Sci., 1990, vol. 34, pp. 149-260.

    Article  Google Scholar 

  120. 120. Y. Wang, M. Chen, F. Zhou, and E. Ma: Nature, 2002, vol. 419, pp. 912-915.

    Article  Google Scholar 

  121. 121. L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, and K. Lu: Science, 2004. vol. 304, pp. 422-426.

    Article  Google Scholar 

  122. 122. S. Pauly, S. Gorantla, G. Wang, U. Kuhn, and J. Eckert: Nature Mater. 2010, vol. 9, pp. 473-477.

    Article  Google Scholar 

  123. 123. K. Edalati, S.Toh, T. Furuta, S. Kuramoto, M. Watanabe, and Z. Horita: Scr. Mater. 2012, vol. 67, pp. 511-51.

    Article  Google Scholar 

  124. 124. P. Kumar, M. Kawasaki, and T.G. Langdon: J. Mater. Sci., 2016, vol. 51, pp. 7-18.

    Article  Google Scholar 

  125. 125. T. Mungole, P. Kumar, M. Kawasaki, and T.G. Langdon: J. Mater. Res., 2014, vol. 29, pp. 2534-2546.

    Article  Google Scholar 

  126. 126. T. Mungole, P. Kumar, M. Kawasaki and T.G. Langdon: J. Mater. Sci., 2015, vol. 50, pp. 3549-3561.

    Article  Google Scholar 

  127. 127. Z. Horita, D.J. Smith, M. Furukawa, M. Nemoto, R.Z. Valiev, and T.G. Langdon: J. Mater. Res. 1996, vol. 11, p. 1880-1890.

    Article  Google Scholar 

  128. 128. R.C. Gifkins and T.G. Langdon: J. Inst. Metals, 1965, vol. 93, pp. 1347-1352.

    Google Scholar 

  129. 129. N.Q. Chinh, P. Szommer, Z. Horita, and T.G. Langdon: Adv. Mater., 2006, vol. 18, pp. 34 -39.

    Article  Google Scholar 

  130. 130. K.V. Ivanov and E.V. Naydenkin: Mater. Sci. Eng., 2014, vol. A606, pp. 313-321.

    Article  Google Scholar 

  131. N.Q. Chinh, T. Györi, R.Z. Valiev, P. Szommer, G. Varga, K. Havancsák, and T.G. Langdon: MRS Comm., 2012, vol. 2, pp. 75–78.

  132. 132. K. Yang, H.J. Fecht, and Y. Ivanisenko: Adv. Eng. Mater., 2014, vol. 16, pp. 517-521.

    Article  Google Scholar 

  133. 133. S.V. Divinski, G. Reglitz, H. Rösner, Y. Estrin, and G. Wilde: Acta Mater., 2011, vol. 59, pp. 1974-1985.

    Article  Google Scholar 

  134. 134. S.V. Divinski, G. Reglitz, I.S. Golovin, M. Peterlechner, R. Lapovok, Y. Estrin, and G. Wilde: Acta Mater., 2015, vol. 82, pp. 11-21.

    Article  Google Scholar 

  135. 135. T.G. Langdon: Kovove Mater., 2015, vol. 53, pp. 1-7.

    Google Scholar 

  136. 136. C. Xu, M. Furukawa, Z. Horita, and T.G. Langdon: Acta Mater. 2005, vol. 53, pp. 749-758.

    Article  Google Scholar 

  137. 137. C. Xu, Z. Száraz, Z. Trojanová, P. Lukáč, and T.G. Langdon: Mater. Sci. Eng., 2008, vol. A497, pp. 206-211.

    Article  Google Scholar 

  138. 138. T.S. Cho, H.J. Li, B. Ahn, M. Kawasaki, and T.G. Langdon: Acta. Mater., 2014, vol. 72, pp. 67-79.

    Article  Google Scholar 

  139. 139. M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, and T.G. Langdon: J. Mater. Res. 1996, vol. 11, pp. 2128-2130.

    Article  Google Scholar 

  140. 140. M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, and T.G. Langdon: Mater. Sci. Eng., 1998. vol. A241, pp. 122-128.

    Article  Google Scholar 

  141. 141. N.X. Zhang, M. Kawasaki, Y. Huang, and T.G. Langdon: J. Mater. Sci., 2013, vol. 48, pp. 4582-4591.

    Article  Google Scholar 

  142. 142. C.T. Wang and T.G. Langdon: IOP Conf. Series: Mater. Sci. Eng., 2014, vol. 63, p. 012107.

    Article  Google Scholar 

  143. 143. R.Z. Valiev, N.A. Enikeev, and T.G. Langdon: Kovove Mater. 2011, vol. 49, pp. 1-9.

    Google Scholar 

  144. 144. N. Krasilnikov, W. Lojkowski, Z. Pakiela, and R.Z. Valiev: Mater. Sci. Eng., 2005, vol. A397, pp. 330-337.

    Article  Google Scholar 

  145. 145. A.W. Thompson: Acta Metall., 1975, vol. 23, pp. 1337-1342.

    Article  Google Scholar 

  146. F. Ebrahimi, G.R. Bourne, M.S. Kelly, and T.E. Matthews: Nanostruct. Mater., 1999, vol. pp. 343–50.

  147. 147. C. Xiao, R.A. Mirshams, S.H. Whang, and W.M. Yin: Mater. Sci. Eng., 2001, vol. A301, pp. 35–43.

    Article  Google Scholar 

  148. 148. R.W. Armstrong: Emerg. Mater. Res., 2014, vol. 3, pp. 246-251.

    Article  Google Scholar 

  149. 149. G.D. Hughes, S.D. Smith, C.S. Pande, H. Johnson and R.W. Armstrong: Scr. Metall., 1986, vol. 20, pp. 93-97.

    Article  Google Scholar 

  150. 150. S.A. Firstov, T.G. Rogul, and O.A. Shut: Functional Mater., 2009, vol. 16, pp. 364-373.

    Google Scholar 

  151. 151. A. Chokshi, A. Rosen, J. Karch, and H. Gleiter: Scr. Metall. 1989, vol. 23, pp. 1679-1684.

    Article  Google Scholar 

  152. 152. H. Conrad and J. Narayan: Scr. Mater., 2000, vol. 42, pp. 1025-1030.

    Article  Google Scholar 

  153. 153. R.Z. Valiev: Mater. Trans., 2014, vol. 55, pp. 13-18.

    Article  Google Scholar 

  154. 154. R.Z. Valiev, N.A. Enikeev, M.Yu. Murashkin, V.U. Kazykhanov, and X. Sauvage: 2010, Scr. Mater., vol. 63, pp. 949-952.

    Article  Google Scholar 

  155. 155. X. Sauvage, G. Wilde, S.V. Divinski, Z. Horita, and R.Z. Valiev: Mater. Sci. Eng., 2012, vol. A540, pp. 1-12.

    Article  Google Scholar 

  156. 156. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y.T. Zhu: Mater. Res. Lett., 2016, vol. 4, pp. 1-21.

    Article  Google Scholar 

Download references

Acknowledgments

The authors are especially grateful to Jim Li for several decades of friendship and collaboration. NB acknowledges the financial support from the organizers for his participation in the TMS J.C.M. Li symposium in Columbus, OH, in October 2015. The work of TGL was supported by the National Science Foundation of the United States under Grant No. DMR-1160966.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terence G. Langdon.

Additional information

Manuscript submitted December 28, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Balasubramanian, N., Langdon, T.G. The Strength–Grain Size Relationship in Ultrafine-Grained Metals. Metall Mater Trans A 47, 5827–5838 (2016). https://doi.org/10.1007/s11661-016-3499-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3499-2

Keywords

Navigation