Abstract
Metals processed by severe plastic deformation (SPD) techniques, such as equal-channel angular pressing (ECAP) and high-pressure torsion (HPT), generally have submicrometer grain sizes. Consequently, they exhibit high strength as expected on the basis of the Hall–Petch (H–P) relationship. Examples of this behavior are discussed using experimental data for Ti, Al, and Ni. These materials typically have grain sizes greater than ~50 nm where softening is not expected. An increase in strength is usually accompanied by a decrease in ductility. However, both high strength and high ductility may be achieved simultaneously by imposing high strain to obtain ultrafine-grain sizes and high fractions of high-angle grain boundaries. This facilitates grain boundary sliding, and an example is presented for a cast Al-7 pct Si alloy processed by HPT. In some materials, SPD may result in a weakening even with a very fine grain size, and this is due to microstructural changes during processing. Examples are presented for an Al-7034 alloy processed by ECAP and a Zn-22 pct Al alloy processed by HPT. In some SPD-processed materials, it is possible that grain boundary segregation and other features are present leading to higher strengths than predicted by the H–P relationship.
Similar content being viewed by others
References
H. Gleiter: Acta Mater., 2000, vol. 48, pp. 1- 29.
T.G. Langdon: Acta Mater., 2013, vol. 61, pp. 7035-7059.
E.O. Hall: Proc. Phys. Soc. Lond. B, 1951, vol. 64, pp. 747-753.
N.J. Petch: J. Iron. Steel Inst., 1953, vol. 174, pp. 25-28.
Z. Horita, M. Furukawa, M. Nemoto, A.J. Barnes, and T.G. Langdon: Acta Mater., 2000, vol. 48, pp. 3633 – 3640.
T.G. Langdon: Mech. Mater., 2013, vol. 67, pp. 2-8.
M. Kawasaki and T.G. Langdon: J. Mater. Sci., 2016, vol. 51, pp. 19-32.
A.J. Barnes: J. Mater. Eng. Perform., 2007, vol. 16, pp. 440 – 454.
T.G. Langdon: Acta Metall. Mater., 1994, vol. 42, pp. 2437–2443.
R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y.T. Zhu: JOM, 2006, vol. 58, no. 4, pp. 33-39.
M. Kawasaki, N. Balasubramanian, and T.G. Langdon: Mater. Sci. Eng., 2011, vol. A528, pp. 6624–6629.
R.Z. Valiev, D.A. Salimonenko, N.K. Tsenev, P.B. Berbon, and T.G. Langdon: Scr. Mater., 1997, vol. 37, pp.1945–1950.
R.K. Islamgaliev, N.F. Yunusova, R.Z. Valiev, N.K. Tsenev, V.N. Perevezentsev, and T.G. Langdon: Scr. Mater., 2003, vol. 49, pp. 467–472.
R. Kaibyshev, K. Shipilova, F. Musin, and Y. Motohashi: Mater. Sci. Technol., 2005, vol. 21, pp. 408–418.
F. Musin, R. Kaibyshev, Y. Motohashi, and G.Itoh: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2383–2392.
K.T. Park, D.Y. Hwang, Y.K. Lee, Y.K. Kim, and D.H. Shin: Mater. Sci. Eng., 2003, vol. A341, pp. 273–281.
I. Nikulin, R. Kaibyshev, and T. Sakai: Mater Sci. Eng., 2005, vol. A407, pp. 62–70.
S. Komura, M. Furukawa, Z. Horita, M. Nemoto, and T.G. Langdon: Mater Sci. Eng., 2001, vol. A297, pp. 111–118.
S. Komura, Z. Horita, M. Furukawa, M. Nemoto, and T.G. Langdon: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 707–716.
S. Lee, A. Utsunomiya, H. Akamatsu, K. Neishi, M. Furukawa, Z. Horita, and T.G. Langdon: Acta Mater., 2005, vol. 50, pp. 553–564.
K. Turba, P. Málek, and M. Cieslar: Mater. Sci. Eng., 2007, vol. A462, pp. 91–94.
R.S. Mishra, R.Z. Valiev, S.X. McFadden, R.K. Islamgaliev, and A.K. Mukherjee: Philos. Mag. A, 2001, vol. 81, pp.37–48.
23. V.N. Perevezentsev, M.Yu. Shcherban, M.Yu. Murashkin, and R.Z. Valiev: Tech. Phys. Lett., 2007, vol. 33, pp. 648–650.
24. S.V. Dobatkin, E.N. Bastarache, G. Sakai, T. Fujita, Z. Horita, and T.G. Langdon: Mater. Sci. Eng., 2005, vol. A408, pp. 141–146.
25. A. Alhamidi and Z. Horita: Mat. Sci. Eng., 2015, vol. A622, pp. 139-145.
C. Xu, S.V. Dobatkin, Z. Horita, and T.G. Langdon: Mater. Sci., Eng., 2009, vol. A500, pp. 170–75.
27. S. Sabbaghianrad, M. Kawasaki, and T.G. Langdon: J. Mater. Sci., 2012, vol. 47, pp. 7789–7795.
28. M. Kawasaki, J. Foissey, and T.G. Langdon: Mater. Sci. Eng., 2013, vol. A561, pp.118–125.
29. G. Sakai, Z. Horita, and T.G. Langdon: Mater. Sci. Eng., 2005, vol. A393, pp. 344–351.
30. Y. Harai, K. Edalati, Z. Horita, and T.G. Langdon: Acta Mater., 2009, vol. 57, pp. 1147–1153.
31. R.B. Figueiredo and T.G. Langdon: J. Mater. Sci., 2008, vol. 43, pp. 7366–7371.
32. Y. Miyahara, Z. Horita, and T.G. Langdon: Mater. Sci. Eng, 2006, vol. A420, pp. 240–244.
33. M. Mabuchi, H. Iwasaki, K. Yanase, and K. Higashi: Scr. Mater., 1997, vol. 36, pp. 681–686.
34. M. Mabuchi, K. Ameyama, H. Iwasaki, and K. Higashi: Acta Mater., 1999, vol. 47, pp. 2047–2057.
V.N. Chuvil’deev, T.G. Nieh, M.Yu. Gryaznov, V.I. Kopylov, and A.N. Sysoev: J. Alloys Compd., 2004, vol. 378, pp. 253–57.
36. K. Yan, Y-S. Sun, J. Bai, and F. Xue: Mater. Sci. Eng., 2011, vol. 528, pp. 1149–1153.
37. H. Watanabe, T. Mukai, K. Ishikawa, and K. Higashi: Scr. Mater., 2002, vol. 46, pp. 851–856.
V.N. Chuvil’deev, T.G. Nieh, M.Yu. Gryaznov, A.N. Sysoev, and V.I. Kopylov: Scripta Mater., 2004, vol. 50, pp. 861–65.
39. R.B. Figueiredo and T.G. Langdon: Mater. Sci. Eng., 2006, vol. A430, pp.151–156.
40. R.B. Figueiredo and T.G. Langdon: Adv. Eng. Mater., 2008, vol. 10, pp. 37–40.
41. Y. Miyahara, K. Matsubara, Z. Horita, and T.G. Langdon: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 1705–1711.
42. K. Matsubara, Y. Miyahara, Z. Horita, and T.G. Langdon: Acta Mater. 2003, vol. 51, pp. 3073–3084.
43. M. Furui, C. Xu, T. Aida, M. Inoue, H. Anada, and T.G. Langdon: Mater. Sci. Eng., 2005, vol. A410–411, pp. 439–442
44. M. Furui, H. Kitamura, H. Anada, and T.G. Langdon: Acta Mater., 2007, vol. 55, pp. 1083– 1091.
45. S.W. Xu, M.Y. Zheng, S. Kamado, and K. Wu: Mater. Sci. Eng., 2012, vol. A549, pp. 60–68.
46. Z. Kang, L. Zhu, and J. Zhang: Mater. Sci. Eng., 2015, vol. A633, pp. 59–62.
47. Y. Harai, M. Kai, K. Kaneko, Z. Horita, and T.G. Langdon: Mater. Trans., 2008, vol. 49, pp. 76–83.
48. S.A. Torbati-Sarraf and T.G. Langdon: J. Alloys Compd., 2014, vol. 613, pp. 357–363.
49. M. Kai, Z. Horita, and T.G. Langdon: Mater. Sci. Eng., 2008, vol. A488, pp. 117– 124.
50. O.B. Kulyasova, R.K. Islamgaliev, A.R. Kil’mametov, and R.Z. Valiev: Phys. Met. Metallogr., 2006, vol. 101, pp. 585–590.
51. R.Z. Valiev, R.K. Islamgaliev, and I.V. Alexandrov: Prog. Mater. Sci., 2000, vol. 45, pp. 103 -189.
52. M. Furukawa, Z. Horita, M. Nemoto, and T.G. Langdon: J. Mater. Sci., 2001, vol. 36, pp. 2835 – 2843.
53. R.Z. Valiev and T.G. Langdon: Prog. Mater. Sci., 2006, vol. 51, pp. 881- 981.
A.P. Zhilyaev and T.G. Langdon: Prog, Mater. Sci., 2008,vol. 53, pp. 893-979.
55. M. Ebrahimi, H. Gholipour, and F. Djavanroodi: Mater. Sci. Eng., 2016, vol. A650, pp. 1-7.
56. Y. Saito, N. Tsuji, H. Utsunomiya, T. Sakai, and R.G. Hong: Scr. Mater., 1998, vol. 39, pp. 1221- 1227.
57. H.Q. Sun, Y.-N. Shi, M.-X. Zhang, and K. Lu: Acta Mater., 2007, vol. 55, pp. 975-982.
58. J.Y. Huang, Y.T. Zhu, J.H. Jiang, and T.C. Lowe: Acta Mater., 2001, vol. 49, pp. 1497-1505.
59. C. Xiao, R.A. Mirshams, S.H. Whang, and W.M. Yin: Mat. Sci. Eng., 2001, vol. A301, pp. 35–43
60. D.A. Hughes and N. Hansen: Phys. Rev. Lett., 2014, vol. 112, p. 135504.
R.W. Armstrong: in “Ultrafine-Grain Metals”, eds. J.J. Burke and V. Weiss: Proceedings of the 16th Sagamore Army Materials Research Conference, Syracuse University Press, NY, 1970, pp. 1–25.
62. J.R. Low. Jr. and M Gensamer: Trans. TMS-AIME, 1944, vol. 158, pp. 207-214.
63. A.H. Cottrell and B.A. Bilby: Proc. Phys. Soc. Lond. 1949, vol. 62, pp. 49-62.
64. A.H. Cottrell: Trans. TMS-AIME, 1958, vol. 212, pp. 192-203.
65. K. Prewo, J.C.M. Li, and M. Gensamer: Metall. Trans., 1972, vol. 3, pp. 2262-2269.
66. V.S. Ananthan and E.O. Hall: Acta Metall. Mater., 1991, vol. 39, pp. 3153-3160.
67. N. Balasubramanian, J.C.M. Li, and M. Gensamer: Mater. Sci. Eng., 1974, vol. 14, pp. 37-45.
68. N. Tsuji, Y. Ito, Y. Saito, and Y. Minamino: Scr. Mater., 2002, vol. 47, pp. 893-899.
69. X.H. An, S.D. Wu, Z.F. Zhang, R.B. Figueiredo, N. Gao, and T.G. Langdon: Scr. Mater., 2012, vol. 66, pp. 227-230.
70. M. Joshi, Y. Fukuta, S. Gao, N. Park, D. Terada, and N. Tsuji: IOP Conf. Series: Mater. Sci. Eng., 2014, vol. 63, p. 012074.
71. D. Terada, M. Inoue, H. Kitahara, and N. Tsuji: Mater. Trans., 2008, vol. 49, pp. 41-46.
72. Z. Li, L. Fu, B. Fu, and A. Shan: Mater. Lett., 2013, vol. 96, pp. 1- 4.
73. I. Sabirov, Y. Estrin, M.R. Barnett, I. Timokhina, and P.D. Hodgson: Acta Mater., 2008 vol. 56, pp. 2223-2230.
74. R. Saha, R. Ueji, and N. Tsuji: Scr. Mater., 2013, vol. 68. pp. 813-816.
75. R.W. Armstrong: Metall. Trans., 2015, DOI: 10.1007/s11661-015-3161-4, on line.
76. D.H. Lee, I.C. Choi, M.Y. Seok, J. He. Z. Lu, J.Y. Suh, M. Kawasaki, T.G. Langdon, and J.I. Jang: J. Mater. Res., 2015, vol. 30, pp. 2804-2815.
77. A.V. Sergueeva, V.V. Stolyarov, R.Z. Valiev, and A.K. Mukherjee: Scr. Metall., 2001, vol. 45, pp. 747-752.
78. V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, and R.Z. Valiev: Mater. Sci. Eng., 2001, vol. A299, pp. 59- 67.
79. V.V. Stolyarov, Y.T. Zhu, T.C. Lowe, R.K. Islamgaliev, and R.Z. Valiev: Mater. Sci. Eng., 2001, vol. 303, pp. 82-89.
80. D.A. Konstantinidis and E.C. Aifantis: Nanostruct. Mater., 1998, vol. 10, pp. 1111- 1118.
81. G.A. Salishchev, R.M. Galeyev, S.P. Malysheva, and M.M. Myshlyaev: Nanostruct. Mater., 1999, vol. 11, pp. 407- 414.
82. R.W. Armstrong and P.C. Jindal: Trans. TMS-AIME, 1968, vol. 242, p. 2513.
83. H. Hu and R. S. Cline: Trans. TMS-AIME, 1968, vol. 242, pp. 1013-1024.
84. C. T. Wang, N. Gao, M.G. Gee, R.J.K. Wood, and T.G. Langdon: J. Mater. Sci., 2013, vol. 48, pp. 4742–4748.
85. X. Zhao, W. Fu, X. Yang, and T.G. Langdon: Scr. Mater., 2008, vol. 59, pp. 542 – 545.
86. X. Zhao, X. Yang, X. Liu, X. Wang, and T.G. Langdon: Mater. Sci. Eng., 2010, vol. A527, pp. 6335 – 6339.
87. Y.G. Ko, D.H. Shin, K.T. Park, and C.S. Lee: Scr. Mater., 2006, vol. 54, pp. 1785- 1789.
88. G.G. Yapici, I. Karaman, and H.J. Maier: Mater. Sci. Eng., 2006, vol. A434, pp. 294- 302.
89. V.V. Stolyarov, L. Zeipper, B. Mingler, and M. Zehetbauer: Mater. Sci. Eng., 2008, vol. A476, pp. 98 – 105.
90. D.H. Kang and T.W. Kim: Mater. Des., 2010, vol. 31, pp. 554- 560.
91. I. Sabirov, R.Z. Valiev, I.P. Semenova, and R. Pippan: Metall. Mater. Trans. A, 2010, vol. 41A, pp. 727–733.
92. G. Purcek, G.G. Yapici, I. Karaman, and H.J. Maier: Mater. Sci. Eng,, 2011, vol. A528, pp. 2303- 2308.
93. Y. Zhang, R.B. Figueiredo, S.N. Alhajeri, J.T. Wang, N. Gao, and T.G. Langdon: Mater. Sci. Eng., 2011, vol. A528, pp. 7708 – 7714.
94. V.L. Sordi, M. Ferrante, M. Kawasaki, and T.G. Langdon: J. Mater. Sci., 2012, vol. 47, pp. 7870 – 7876.
95. C.T. Wang, N. Gao, M.G. Gee, R.J.K. Wood, and T.G. Langdon: Wear, 2012, vol. 280, pp. 28-36.
96. V.V. Stolyarov, Y.T. Zhu, T.C. Lowe, R.K. Islamgaliev, and R.Z. Valiev: Nanostruct. Mater., 1999, vol. 11, pp. 947 – 954.
97. V.V. Stolyarov, Y.T. Zhu, I.V. Alexandrov, T.C. Lowe, and R.Z. Valiev: Mater. Sci. Eng., 2003, vol. A343, pp. 43-50.
98. I.P. Semenova, R.Z. Valiev, E.B. Yakushina, G.H. Salimgareeva, and T.C. Lowe: J. Mater. Sci., 2008, vol. 43, pp. 7354-7359.
99. R.K. Islamgaliev, V.U. Kazyhanov, L.O. Shestakova, A.V. Sharafutdinov, and R.Z. Valiev: Mater. Sci. Eng, 2008, vol. A493, pp. 190-194.
100. G. Purcek, O. Saray, O. Kul, I. Karaman, G.G. Yapici, M. Haouaoui, and H.J. Maier: Mater. Sci. Eng., 2009, vol. A517, pp. 97-104.
101. S. Faghihi, D. Li, and J.A. Szpunar: Nanotechnol., 2010, vol. 21, p. 485703.
P. Luo, D.T. McDonald, W. Xu, S. Palanisamy, M.S. Dargusch, and K. Xia: Scripta Mater. vol. 66, pp. 785–88.
103. P. Bazarnik, Y. Huang, M. Lewandowska, and T.G. Langdon: Mater. Sci. Eng., 2015, vol. A626, pp. 9-15.
104. I. Sabirov, M.Yu. Murashkin, and R.Z. Valiev: Mater. Sci. Eng., 2013, vol. A560, pp. 1- 24.
105. N. Hansen: Scr. Mater., 2004, vol. 51, pp. 801-806.
106. M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, and T.G. Langdon: Philos. Mag. A 1998, vol. 78, pp. 203-215.
107. M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, and T.G. Langdon : Acta Mater., 1996, vol. 44, pp. 4619-4629.
N. Tsuji: in Nanostructured Materials by High Pressure Severe Plastic Deformation, Y.T. Zhu and V. Varyukhin, eds., Springer, Dordrecht, Netherlands, 2006, pp. 227–234.
T. Shanmugasundaram, M. Heilmaier, B.S. Murty, V. Subramanya Sarma: Mater. Sci. Eng., 2010, vol. A527, pp. 7821–25.
110. R.Z. Valiev, I.V. Alexandrov, Y.T. Zhu, and T.C. Lowe: J. Mater. Res., 2002, vol. 17, pp. 5-8.
111. R.Z. Valiev: Nature, 2011, vol. 419, pp. 887-889.
112. T. Suo, Y. Li, F. Zhao, Q. Deng, and K. Xie: Mater. Res. Innov. 2011, vol. 15, pp. 69-72
113. I. Semenova, G. Salimgareeva, G. Da Costa, W. Lefebvre, and R. Z. Valiev: Adv. Eng. Mater., 2010, vol.12, pp. 803-807
114. A.V. Polykov, I. P. Semenova, R. Z. Valiev, Y. Huang, and T.G. Langdon: MRS Comm. 2013, vol. 3, pp. 249-253.
115. N. Maury, N.X. Zhang, Y. Huang, A.P. Zhilyaev, and T.G. Langdon: Mater. Sci. Eng., 2015, vol. A638, pp. 174-182.
116. Y. Huang, M. Lemang, N.X. Zhang, P.H.R. Pereira, and T.G. Langdon: Mater. Sci. Eng., 2016, vol. A655, pp. 60-69.
117. O. Andreau, J. Gubicza, N.X. Zhang, Y. Huang, P. Jenei, and T.G. Langdon: Mater. Sci. Eng., 2014, vol. A615, pp. 231-239.
118. K. Edalati, T. Furuta, T. Daio, S. Kuramoto, and Z. Horita: Mater. Res. Lett., 2015, vol. 3, pp. 197-202.
119. Y. Waseda, S. Ueno, M. Hagiwara, and K.T. Aust: Prog. Mater. Sci., 1990, vol. 34, pp. 149-260.
120. Y. Wang, M. Chen, F. Zhou, and E. Ma: Nature, 2002, vol. 419, pp. 912-915.
121. L. Lu, Y.F. Shen, X.H. Chen, L.H. Qian, and K. Lu: Science, 2004. vol. 304, pp. 422-426.
122. S. Pauly, S. Gorantla, G. Wang, U. Kuhn, and J. Eckert: Nature Mater. 2010, vol. 9, pp. 473-477.
123. K. Edalati, S.Toh, T. Furuta, S. Kuramoto, M. Watanabe, and Z. Horita: Scr. Mater. 2012, vol. 67, pp. 511-51.
124. P. Kumar, M. Kawasaki, and T.G. Langdon: J. Mater. Sci., 2016, vol. 51, pp. 7-18.
125. T. Mungole, P. Kumar, M. Kawasaki, and T.G. Langdon: J. Mater. Res., 2014, vol. 29, pp. 2534-2546.
126. T. Mungole, P. Kumar, M. Kawasaki and T.G. Langdon: J. Mater. Sci., 2015, vol. 50, pp. 3549-3561.
127. Z. Horita, D.J. Smith, M. Furukawa, M. Nemoto, R.Z. Valiev, and T.G. Langdon: J. Mater. Res. 1996, vol. 11, p. 1880-1890.
128. R.C. Gifkins and T.G. Langdon: J. Inst. Metals, 1965, vol. 93, pp. 1347-1352.
129. N.Q. Chinh, P. Szommer, Z. Horita, and T.G. Langdon: Adv. Mater., 2006, vol. 18, pp. 34 -39.
130. K.V. Ivanov and E.V. Naydenkin: Mater. Sci. Eng., 2014, vol. A606, pp. 313-321.
N.Q. Chinh, T. Györi, R.Z. Valiev, P. Szommer, G. Varga, K. Havancsák, and T.G. Langdon: MRS Comm., 2012, vol. 2, pp. 75–78.
132. K. Yang, H.J. Fecht, and Y. Ivanisenko: Adv. Eng. Mater., 2014, vol. 16, pp. 517-521.
133. S.V. Divinski, G. Reglitz, H. Rösner, Y. Estrin, and G. Wilde: Acta Mater., 2011, vol. 59, pp. 1974-1985.
134. S.V. Divinski, G. Reglitz, I.S. Golovin, M. Peterlechner, R. Lapovok, Y. Estrin, and G. Wilde: Acta Mater., 2015, vol. 82, pp. 11-21.
135. T.G. Langdon: Kovove Mater., 2015, vol. 53, pp. 1-7.
136. C. Xu, M. Furukawa, Z. Horita, and T.G. Langdon: Acta Mater. 2005, vol. 53, pp. 749-758.
137. C. Xu, Z. Száraz, Z. Trojanová, P. Lukáč, and T.G. Langdon: Mater. Sci. Eng., 2008, vol. A497, pp. 206-211.
138. T.S. Cho, H.J. Li, B. Ahn, M. Kawasaki, and T.G. Langdon: Acta. Mater., 2014, vol. 72, pp. 67-79.
139. M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, and T.G. Langdon: J. Mater. Res. 1996, vol. 11, pp. 2128-2130.
140. M. Furukawa, Z. Horita, M. Nemoto, R.Z. Valiev, and T.G. Langdon: Mater. Sci. Eng., 1998. vol. A241, pp. 122-128.
141. N.X. Zhang, M. Kawasaki, Y. Huang, and T.G. Langdon: J. Mater. Sci., 2013, vol. 48, pp. 4582-4591.
142. C.T. Wang and T.G. Langdon: IOP Conf. Series: Mater. Sci. Eng., 2014, vol. 63, p. 012107.
143. R.Z. Valiev, N.A. Enikeev, and T.G. Langdon: Kovove Mater. 2011, vol. 49, pp. 1-9.
144. N. Krasilnikov, W. Lojkowski, Z. Pakiela, and R.Z. Valiev: Mater. Sci. Eng., 2005, vol. A397, pp. 330-337.
145. A.W. Thompson: Acta Metall., 1975, vol. 23, pp. 1337-1342.
F. Ebrahimi, G.R. Bourne, M.S. Kelly, and T.E. Matthews: Nanostruct. Mater., 1999, vol. pp. 343–50.
147. C. Xiao, R.A. Mirshams, S.H. Whang, and W.M. Yin: Mater. Sci. Eng., 2001, vol. A301, pp. 35–43.
148. R.W. Armstrong: Emerg. Mater. Res., 2014, vol. 3, pp. 246-251.
149. G.D. Hughes, S.D. Smith, C.S. Pande, H. Johnson and R.W. Armstrong: Scr. Metall., 1986, vol. 20, pp. 93-97.
150. S.A. Firstov, T.G. Rogul, and O.A. Shut: Functional Mater., 2009, vol. 16, pp. 364-373.
151. A. Chokshi, A. Rosen, J. Karch, and H. Gleiter: Scr. Metall. 1989, vol. 23, pp. 1679-1684.
152. H. Conrad and J. Narayan: Scr. Mater., 2000, vol. 42, pp. 1025-1030.
153. R.Z. Valiev: Mater. Trans., 2014, vol. 55, pp. 13-18.
154. R.Z. Valiev, N.A. Enikeev, M.Yu. Murashkin, V.U. Kazykhanov, and X. Sauvage: 2010, Scr. Mater., vol. 63, pp. 949-952.
155. X. Sauvage, G. Wilde, S.V. Divinski, Z. Horita, and R.Z. Valiev: Mater. Sci. Eng., 2012, vol. A540, pp. 1-12.
156. R.Z. Valiev, Y. Estrin, Z. Horita, T.G. Langdon, M.J. Zehetbauer, and Y.T. Zhu: Mater. Res. Lett., 2016, vol. 4, pp. 1-21.
Acknowledgments
The authors are especially grateful to Jim Li for several decades of friendship and collaboration. NB acknowledges the financial support from the organizers for his participation in the TMS J.C.M. Li symposium in Columbus, OH, in October 2015. The work of TGL was supported by the National Science Foundation of the United States under Grant No. DMR-1160966.
Author information
Authors and Affiliations
Corresponding author
Additional information
Manuscript submitted December 28, 2015.
Rights and permissions
About this article
Cite this article
Balasubramanian, N., Langdon, T.G. The Strength–Grain Size Relationship in Ultrafine-Grained Metals. Metall Mater Trans A 47, 5827–5838 (2016). https://doi.org/10.1007/s11661-016-3499-2
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11661-016-3499-2