Skip to main content
Log in

Microstructure and Mechanical Properties of Heat-Treated Co-20Cr-15W-10Ni Alloy for Biomedical Application

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The microstructure and mechanical properties of a heat-treated biomedical ASTM F90 Co-20Cr-15W-10Ni (mass pct) alloy were investigated. The alloy was heat-treated at temperatures of 673 K to 1623 K (400 °C to 1450 °C) for holding times of 0.6 to 259.2 ks. The formation of M23X6-type (M: metallic element and X: C and N) and η-phase (M6X-M12X type) precipitates was detected in the heat-treated alloys using a combination of electrolytic extraction and X-ray diffraction. The formation of precipitates deteriorated the ductility of the heat-treated alloys. On the other hand, both the tensile strength and elongation were improved by heat treatment at low temperatures of 673 K to 873 K (400 °C to 600 °C). In this heat-treated alloy, the density of stacking faults was higher than that of the as-received alloy, and the formation of the ε-phase was detected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

BSE:

Backscattered electron

EBSD:

Electron backscatter diffraction

SEM:

Scanning electron microscopy

TRIP:

Transformation-induced plasticity

XRD:

X-ray diffraction

References

  1. R. V. Marrey, R. Butgermeister, R. B. Grishaber and R. O. Ritchie: Biomaterials, 2006, vol. 27, pp. 1988–2000.

    Article  Google Scholar 

  2. J. Favre, Y. Koizumi, A. Chiba, D. Fabregue and E. Maire: Meta// Mater. Trans. A, 2013, vol. 44, pp. 2819–2830.

    Article  Google Scholar 

  3. P. Poncin and J. Proft: Proc. Mater. Process. Med. Devices Conf., 2003. pp. 253–59.

  4. F.R. Morral: J. Mater., 1966, vol. 1, pp. 384–412.

    Google Scholar 

  5. R. K. Gupta, M. K. Karthikeyan, D. N. Bhalia, B. R. Ghosh and P. P. Sinha: Met. Sci. heat treat., 2008, vol. 50, pp. 175–178.

    Article  Google Scholar 

  6. J. Teague, E. Cerreta and M. Stout: Meta//, Mater. Trans. A, 2004, vol. 35, pp. 2767–2781.

    Article  Google Scholar 

  7. N. Yukawa and K. Sato: Mater. Trans. JIM, 1968, vol. 9, pp. 680–686.

    Google Scholar 

  8. M. Tanaka and H. Iizuka: Meta//. Mater. Trans. A, 1992, vol. 23, pp. 609–616.

    Article  Google Scholar 

  9. P. Poncin, B. Gruez, P. Missillier, and P. Comte-Gaz: Proc. Mater. Process. Med. Devices Conf., 2006. pp. 85–90.

  10. P. Poncin, C. Millet, and J. Chevy: Proc. Mater. Process. Med. Devices Conf., 2004. pp. 279–83.

  11. K. Ueki, K. Ueda and T. Narushima: Key. Eng. Mater., 2014, vol. 616, pp. 258-262.

    Article  Google Scholar 

  12. S. Mineta, S. Namba, T. Yoneda, K. Ueda and T. Narushima: Meta//, Mater. Trans. A, 2010, vol. 41, pp. 2129–2138.

    Article  Google Scholar 

  13. S. Mineta, Alfirano, S. Namba, T. Yoneda, K. Ueda, and T. Narushima: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 494–503.

    Article  Google Scholar 

  14. S. Mineta, Alfirano S. Namba, T. Yoneda, K. Ueda and T. Narushima: Meta//, Mater. Trans. A, 2012, vol. 43, pp. 3351–3358.

    Article  Google Scholar 

  15. F. Kurosawa, I. Taguchi and R. Matsumoto: J. Japan Inst. Metals, 1976, vol. 40, pp. 834–838.

    Google Scholar 

  16. A.J.T. Clemow and B.L. Daniell: J. Biomed. Mater. Res., 1979, vol. 13, pp. 265–279.

    Article  Google Scholar 

  17. Alfirano, S. Mineta, S. Namba, T. Yoneda, K. Ueda and T. Narushima: Meta//, Mater. Trans. A, 2011, vol. 42, pp. 1941–1949.

    Article  Google Scholar 

  18. Alfirano, S. Mineta, S. Namba, T. Yoneda, K. Ueda and T. Narushima: Meta//, Mater. Trans. A, 2012, vol. 43, pp. 2125–2132.

    Article  Google Scholar 

  19. E. Bettini, T. Eriksson, M. Boström, C. Leygraf and J. Pan: Electrochim. Acta, 2011, vol. 56, pp. 9413–9419.

    Article  Google Scholar 

  20. T. Narushima, S. Mineta, Y. Kurihara and K. Ueda: JOM, 2013, vol. 65(4), pp. 489–504.

    Article  Google Scholar 

  21. D. Sorensen, B. Q. Li, W. W. Gerberich and K. A. Mkhoyan: Acta Mater., 2014, vol. 63, pp. 63–72.

    Article  Google Scholar 

  22. M. Assefpour-Dezfuly and W. Bonfield: J. Mater. Sci., 1984, vol. 19, pp. 2815–2836.

    Article  Google Scholar 

  23. L. Remy and A. Pineau: Mater. Sci. Eng., 1976, vol. 26, pp. 123-132.

    Article  Google Scholar 

  24. I. Tamura: Met. Sci., 1982, vol. 16, pp. 245–253.

    Article  Google Scholar 

  25. T. Maki, T. Furuhara, N. Tsuji, S. Morita, G. Miyamoto and A. Shibata: Tetsu-to-Hagane, 2014, vol. 100, pp.1062-1075.

    Article  Google Scholar 

  26. A. K. Srivastava, G. Jha, N. Gope and S.B. Singh: Mater. Charact. 2006, vol. 57, pp. 127-135.

    Article  Google Scholar 

Download references

Acknowledgment

This study was financially supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, under Contract No. 25249094.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kosuke Ueki.

Additional information

Manuscript submitted October 2, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ueki, K., Ueda, K. & Narushima, T. Microstructure and Mechanical Properties of Heat-Treated Co-20Cr-15W-10Ni Alloy for Biomedical Application. Metall Mater Trans A 47, 2773–2782 (2016). https://doi.org/10.1007/s11661-016-3488-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3488-5

Keywords

Navigation