Metallurgical and Materials Transactions A

, Volume 47, Issue 6, pp 3227–3234 | Cite as

Effect of Crystal Orientation on Nanoindentation Behavior in Magnesium

Article

Abstract

The effect of crystal orientation on nanoindentation behavior at both quasi-static and high strain rates was investigated using single-crystalline magnesium oriented in basal and prismatic configurations. Both the basal and prismatic planes had similar activation volumes, 55 and 73b3 for deformation at room temperature, as well as a small temperature dependence up to 423 K (150 °C). Microstructural observations beneath the indentations revealed that {\( 10\bar{1}2 \)} type deformation twins were formed in both orientations irrespective of testing temperature. With twins forming beneath the indenter and multiple orientations of loading, it is believed that cross-slip and/or multiple slip are likely rate-controlling for global deformation, which also aligns with observations on nanoindentation of polycrystalline coarse-grained magnesium. The locations of the twins were consistent with expectations based on indentation mechanics as assessed by finite element simulations. The finite element simulations also predicted that an indenter tip with a shaper tip radius would tend to promote {\( 10\bar{1}2 \)} twins.

References

  1. 1.
    [1] B. C. Wonsiewicz and W. A. Backofen: Trans. Metall. Sco. AIME. 1967, vol. 239, pp.1422-1431.Google Scholar
  2. 2.
    [2] H. Yohinaga and R. Horiuchi: Mater. Trans. JIM. 1963, vol. 4, pp.134-141.Google Scholar
  3. 3.
    [3] R. E. Reed-Hill and W. D. Robertson: Acta Metall. 1957, vol. 5, pp. 728-737.CrossRefGoogle Scholar
  4. 4.
    [4] M. R. Barnett, Z. Keshavarz, A. G. Beer and D. Atweel: Acta Mater. 2004, vol. 52, pp.5093-5104.CrossRefGoogle Scholar
  5. 5.
    [5] T. Tsuru and Y. Shibutani: Phy. Rev. B, 2007, vol. 75, 035415.CrossRefGoogle Scholar
  6. 6.
    [6] G. Ziegenhain, H. M. Urbassek and A. J. Hartmaier: J. Appl. Phy. 2010, vol. 107, 061807.CrossRefGoogle Scholar
  7. 7.
    [7] X. H. Liu, J. F. Gu, Y. Shen and C. F. Chen: Scripta Mater. 2008, vol. 58, pp.564-567.CrossRefGoogle Scholar
  8. 8.
    [8] M. A. Tschopp, D. E. Spearot and D. L. McDowell: Mod. Sim. Mater. Sci. 2007, vol. 15, pp.693-710.CrossRefGoogle Scholar
  9. 9.
    [9] J. D. Kiely and J. E. Houston: Phys. Rev. B, 1998, vol. 57, 12588.CrossRefGoogle Scholar
  10. 10.
    [10] K. J. Van Vliet, J. Li, T. Zhu, S. Yip and S. Suresh: Phys. Rev. B, 2003, vol. 67, 104105.CrossRefGoogle Scholar
  11. 11.
    [11] S. G. Corcoran, R. J. Colton, E. T. Lilleodden and W. W. Gerberich: Phys. Rev. B, 1997, vol. 55, 16057.CrossRefGoogle Scholar
  12. 12.
    [12] J. K. Mason, A. C. Lund and C. A. Schuh: Phy. Rev. B, 2006, vol. 73, 054102.CrossRefGoogle Scholar
  13. 13.
    [13] A. Gouldstone, H. J. Koh, K. Y. Zeng, A. E. Giannakopoulos and S. Suresh: Acta Mater. 2000, vol. 48, pp.2277-2295.CrossRefGoogle Scholar
  14. 14.
    [14] J. Li, Y. Ni, H. Wang and J. Mei: Nanoscale. Res. Letts. 2010, vol. 5, pp.420-432.CrossRefGoogle Scholar
  15. 15.
    [15] J. H. Shin, S. H. Kim, T. K. Ha, K. H. Oh, I. S. Choi and H. N. Han: Scripta Mater. 2013, vol. 68, pp.483-486.CrossRefGoogle Scholar
  16. 16.
    [16] D. Catoor, Y. F. Gao, J. Geng, M. J. N. V. Prasad, E. G. Herbert, K. S. Kumar, G. M. Pharr and E. P. Gorge: Acta Mater. 2013, vol. 61, pp.2953-2965.CrossRefGoogle Scholar
  17. 17.
    [17] H. Somekawa and C. A. Schuh: Scripta Mater. 2013, vol. 68, pp.416-419.CrossRefGoogle Scholar
  18. 18.
    [18] H. Somekawa and C. A. Schuh: J. Mater. Res. 2012, vol. 27, pp.1205-1213.CrossRefGoogle Scholar
  19. 19.
    [19] C. M. Byer, B. Li, B. Cao and K. T. Ramesh: Scripta Mater. 2010, vol. 62, pp.536-539.CrossRefGoogle Scholar
  20. 20.
    [20] E. Lilleodden: Scripta Mater. 2010, vol. 62, pp.532-535.CrossRefGoogle Scholar
  21. 21.
    [21] J. Ye, R. K. Mishra, A. K. Sachdev and A. M. Minor: Scripta Mater. 2011, vol. 64, pp.292-295.CrossRefGoogle Scholar
  22. 22.
    [22] H. Kitahara, T. Mayama, K. Okumura, Y. Tadano, M. Tsushida and S. Ando: Acta Mater, 2014, vol. 78, pp.290-300.CrossRefGoogle Scholar
  23. 23.
    [23] T. Guo, F. Siska and M. R. Barnett; Scripta Mater. 2015, vol. 110, pp.10-13.CrossRefGoogle Scholar
  24. 24.
    [24] C. Zambaldi, C. Zehnder and D. Rabbe; Acta Mater. 2015, vol. 91, pp.267-288.CrossRefGoogle Scholar
  25. 25.
    [25] J. Alkorta, J. M. Martinez-Esnaola and J. G. Sevillano: J. Mater. Res. 2008, vol. 23, pp.182-188.CrossRefGoogle Scholar
  26. 26.
    [26] W. H. Poisl, W. C. Oliver and B. D. Fabes: J. Mater. Res. 1995, vol. 10, pp.2024-2032.CrossRefGoogle Scholar
  27. 27.
    [27] J. R. Trelewicz and C. A. Schuh: Appl. Phys. Letts. 2008, vol. 93, 171916.CrossRefGoogle Scholar
  28. 28.
    [28] G. Constantinides, C. A. Tweedie, N. Savva, J. F. Smith and K. J. VanVliet: Exp. Mech. 2009, vol. 49, pp.511-521.CrossRefGoogle Scholar
  29. 29.
    M.M. Avedesian, and H. Baker, eds., ASM Specialty Handbook, Magnesium and Magnesium Alloys, ASM International, Materials Park, OH, 1999.Google Scholar
  30. 30.
    [30] H. Somekawa and T. Mukai: Scripta Mater. 2005, vol. 53, pp.541-545.CrossRefGoogle Scholar
  31. 31.
    [31] W. F. Gale and T. C. Totemeier; Smithells Metals Reference Book, eight edition, Elsevier, Oxford, 2004.Google Scholar
  32. 32.
    ABAQUS/Explicit ver 63 (2003) User’s Manual, Theory Manual, Habbit, Karlsson & Sorensen, Inc, Providence.Google Scholar
  33. 33.
    [33] H. Somekawa, T. Inoue and T. Mukai: Mater. Sci. Eng. 2010, vol. A527, pp.1761-1768.CrossRefGoogle Scholar
  34. 34.
    [34] A. Akhtar and E. Teghtsoonian: Acta Metall. 1969, vol. 17, pp.1339-1350.CrossRefGoogle Scholar
  35. 35.
    [35] A. Akhtar and E. Teghtsoonian: Acta Metall. 1969, Vol. 17, pp.1351-1356.CrossRefGoogle Scholar
  36. 36.
    [36] H. J. Frost and M. F. Ashby, Deformation-mechanism Map, Pergaman Press, Oxford, 1982.Google Scholar
  37. 37.
    [37] W. F. Sheely and R. R. Nash: Trans. Metall. Soc. AIME. 1960, vol. 218, pp.416-423.Google Scholar
  38. 38.
    P. Wardflynn, J. Mote and J. E. Dorn: Trans. Metall. Soc. AIME. 1961, vol. 221, pp.1148-1154.Google Scholar
  39. 39.
    [39] S. Gollapudi, M. A. Azeem, T. Tweari and U. Ramamurty: Scripta Mater. 2011, vol. 64, pp.189-192.CrossRefGoogle Scholar
  40. 40.
    [40] S. J. Lloyd, J. M. Molina-Aldareguia and W. J. Clegg: Philo. Mag. 2002, vol. 82A, pp.1963-1970.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  1. 1.Research Center for Strategic MaterialsNational Institute for Materials ScienceTsukubaJapan
  2. 2.Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations