Skip to main content
Log in

Nanoscale Copper and Copper Compounds for Advanced Device Applications

  • Symposium: Micromechanics of Advanced Materials III in Honor of J.C.M. Li
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Copper has been in use for at least 10,000 years. Copper alloys, such as bronze and brass, have played important roles in advancing civilization in human history. Bronze artifacts date at least 6500 years. On the other hand, discovery of intriguing properties and new applications in contemporary technology for copper and its compounds, particularly on nanoscale, have continued. In this paper, examples for the applications of Cu and Cu alloys for advanced device applications will be given on Cu metallization in microelectronics devices, Cu nanobats as field emitters, Cu2S nanowire array as high-rate capability and high-capacity cathodes for lithium-ion batteries, Cu-Te nanostructures for field-effect transistor, Cu3Si nanowires as high-performance field emitters and efficient anti-reflective layers, single-crystal Cu(In,Ga)Se2 nanotip arrays for high-efficiency solar cell, multilevel Cu2S resistive memory, superlattice Cu2S-Ag2S heterojunction diodes, and facet-dependent Cu2O diode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Copper Development Council, http://copperalliance.org.uk/, 2015.

  2. V. Johnson, Introduction to Engineering Materials, 3rd Edition. MacMillan Press Ltd, London, 1993, pp. 202-211.

    Google Scholar 

  3. ASM Handbook, Volume 2 - Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, 9th Edition, American Society for Metals, Metals Park, Ohio, USA, 1979, pp. 239-247.

    Google Scholar 

  4. C.S. Liu and L.J. Chen, J. Appl. Phys. 1993, vol. 74, pp5501-5506.

    Article  Google Scholar 

  5. C.S. Liu, S.R. Chen, W.J. Chen, and L.J. Chen, Mater. Chem. Phys. 1993, vol. 36, pp. 170-173.

    Article  Google Scholar 

  6. C.S. Liu and L.J. Chen, J. Appl. Phys. 1993, vol. 74, pp. 5507-5509.

    Article  Google Scholar 

  7. C.S. Liu and L.J. Chen, J. Appl. Phys. 1993, vol. 74, pp. 3611-3613 .

    Article  Google Scholar 

  8. C.S. Liu and L.J. Chen, J. Appl. Phys. 1994, vol. 75, pp. 2730-2732.

    Article  Google Scholar 

  9. C.S. Liu and L.J. Chen, Thin Solid Films 1995, vol. 262, pp. 187-198.

    Article  Google Scholar 

  10. H.Y. Huang and L.J. Chen, J. Appl. Phys. 2000, vol. 88, pp. 1412-1417.

    Article  Google Scholar 

  11. K.C. Chen, W.W. Wu, C.N. Liao, L.J. Chen, and K.N. Tu, Science 2008, vol. 321, pp. 1066-1069.

    Article  Google Scholar 

  12. L.J. Chen and W.W. Wu, Mater. Sci. Engineering R, 2010, vol. 70, pp. 303-319 .

    Article  Google Scholar 

  13. Y. Chang, M.L. Lye and H.C. Zeng, Langmuir, 2005, vol. 21, pp. 3746-3748.

    Article  Google Scholar 

  14. J. H. Wang, P. Y. Su, M. Y. Lu, L. J. Chen, C. H. Chen, and C. J. Chiu, Solid-State Lett. 2005, vol. 8, pp. C9-C11.

    Article  Google Scholar 

  15. J. H. Wang, T. H. Yang, W. W. Wu, L. J. Chen, C.H. Chen, and C.J. Chiu, Nanotechnology, 2006, vol. 17, pp. 719-722.

    Article  Google Scholar 

  16. C.H. Lai, K.W. Huang, J.H. Cheng, C.Y. Lee, B.J. Hwang, and L.J. Chen, J. Mater. Chem. 2010, vol. 20, pp. 6638-45.

    Article  Google Scholar 

  17. C.H. Lai, M.Y. Lu, and L.J. Chen, J. Mater. Chem. 2012, vol. 22, pp. 19-30.

    Article  Google Scholar 

  18. C.C. Lin, W.F. Lee, M.Y. Lu, S.Y. Chen, M.H. Lung, T.C. Chan, H.W. Tsai, Y.L. Chueh, and L.J. Chen, J. Mater. Chem. 2012, vol. 22, pp. 7098-7103.

    Article  Google Scholar 

  19. Fang-Wei Yuan, Chiu-Yen Wang, Lih-Juann Chen, Hsing-Yu Tuan, and Kang L. Wang, Nanoscale 2013, vol. 5, pp. 9875- 81.

    Article  Google Scholar 

  20. L.J. Chen and W.W. Wu, Jpn. J. Appl. Phys. 2015, vol. 54, pp. 07JA01-1-11.

  21. C.H. Hung, C.H. Chen, S.Y. Chen, Y.T. Yen, W.C. Shih, W.C. Kuo, J.Y. Juang, Y.K. Liao, H.C. Kuo, C.H. Lai, L.J. Chen, and Y.L. Chueh, Nano Lett. 2011, vol. 11, pp. 4443-4448.

    Article  Google Scholar 

  22. P.H. Liu, C.C. Lin, A. Manekkathodi, and L.J. Chen, Nano Energy 2015, vol. 15, pp. 362-368.

    Article  Google Scholar 

  23. Chih-Shan Tan, Ching-Hung Hsiao, Shau-Chieh Wang, Pei-Hsuan Liu, Ming-Yen Lu, Michael H. Huang, Hao Ouyang, and Lih-Juann Chen, ACS Nano 2014, vol. 8, pp. 9422-9426.

    Article  Google Scholar 

  24. Chih-Shan Tan, Hung-Ying Chen, Hsueh-Szu Chen, Shangjr Gwo, Lih-Juann Chen, Scientific Reports, 2015, vol. 5, pp. 13759-1-7.

    Google Scholar 

  25. Chih-Shan Tan, Shih-Chen Hsu, Wei-Hong Ke, Lih-Juann Chen, and Michael Huang, Nano Lett. 2015, vol. 15, pp. 2155-2160.

    Article  Google Scholar 

Download references

Acknowledgment

The author acknowledges the support of the Ministry of Science and Technology of Taiwan under Project Numbers MOST 104-2221-E-007-030-MY3 and MOST 102-2633-M-007-002.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lih-Juann Chen.

Additional information

Manuscript submitted November 29, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, LJ. Nanoscale Copper and Copper Compounds for Advanced Device Applications. Metall Mater Trans A 47, 5845–5851 (2016). https://doi.org/10.1007/s11661-016-3477-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3477-8

Keywords

Navigation