Skip to main content
Log in

Texture Development in High-Silicon Iron Sheet Produced by Simple Shear Deformation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Sheet processing of high Si-Fe alloys (up to 6.5 wt pct Si) is demonstrated by application of highly confined shear deformation in cutting-extrusion. This alloy system, of major interest to electromagnetic applications, is characterized by poor workability. By a suitable interactive combination of simple shear, high strain rates, near-adiabatic heating, and large hydrostatic pressure in the deformation zone, flow localization, and cracking inherent to this alloy system are suppressed. This enables creation of sheet and foil forms from bulk ingots, cast or wrought, in a single deformation step, unlike rolling. The sheet is characterized by strong shear textures, described by partial {110} and 〈111〉 fibers, and fine-grained microstructures (~20 µm grain size). The orientation (inclination) of these fibers, with respect to the sheet surface, can be varied over a range of 35 deg through selection of the deformation path. In contrast to rolling textures, the current shear deformation textures are negligibly influenced by recrystallization annealing. A recovery-based continuous recrystallization mechanism is proposed to explain the texture retention. Some general implications for shear-based processing of alloys of limited workability are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. A. Zeitlin: in ASM Handbook Volume 14 Forming and Forging, ASM International, Materials Park, OH, 1988, pp. 739–81

    Google Scholar 

  2. M. Efe, W. Moscoso, K. P. Trumble, W. D. Compton, and S. Chandrasekar: Acta Mater., 2012, vol. 60, pp. 2031–42.

    Article  Google Scholar 

  3. D. Sagapuram, M. Efe, W. Moscoso, S. Chandrasekar, and K. P. Trumble: Acta Mater., 2013, vol. 61, pp. 6843–56.

    Article  Google Scholar 

  4. [4] M. F. Littmann: J. Appl. Phys., 1967, vol. 38, p. 1104–08.

    Article  Google Scholar 

  5. [5] C. Chen: Magnetism and Metallurgy of Soft Magnetic Materials, Dover Publications Inc., Mineola, N. Y., 1986, pp. 376–84.

    Google Scholar 

  6. [6] S. Mishra: Acta Mater., 1984, vol. 32, pp. 2185–2201.

    Article  Google Scholar 

  7. [7] S. Zaefferer and N. Chen: Solid State Phenom., 2005, vol. 105, pp. 29–36.

    Article  Google Scholar 

  8. [8] Y. Shimizu, Y. Ito, and Y. Iida: Metall. Mater. Trans. A, 1986, vol. 17, pp. 1323–34.

    Article  Google Scholar 

  9. [9] R. PremKumar, I. Samajdar, N. N. Viswanathan, V. Singal, and V. Seshadri: J. Magn. Magn. Mater., 2003, vol. 264, pp. 75–85.

    Article  Google Scholar 

  10. [10] Y. H. Sha, F. Zhang, S. C. Zhou, W. Pei, and L. Zuo: J. Magn. Magn. Mater., 2008, vol. 320, pp. 393–96.

    Article  Google Scholar 

  11. [11] C. F. Chang, V. Laxmanan, and S. K. Das: IEEE Trans. Magn., 1984, vol. 20, pp. 553-58.

    Article  Google Scholar 

  12. [12] H. Fu, Z. Zhang, Y. Jiang, and J. Xie: Mater. Lett., 2011, vol. 65, pp. 1416–19.

    Article  Google Scholar 

  13. [13] Y. Takada, M. Abe, S. Masuda, and J. Inagaki: J. Appl. Phys., 1988, vol. 64, p. 5367–69.

    Article  Google Scholar 

  14. [14] G. Tian and X. Bi: J. Alloys Compd., 2010, vol. 502, pp. 1–4.

    Article  Google Scholar 

  15. [15] C. Bolfarini, M. C. A. Silva, A. M. Jorge, C. S. Kiminami, and W. J. Botta: J. Magn. Magn. Mater., 2008, vol. 320, pp. 653–56.

    Article  Google Scholar 

  16. [16] R. Li, Q. Shen, L. Zhang, and T. Zhang: J. Magn. Magn. Mater., 2004, vol. 281, pp. 135–39.

    Article  Google Scholar 

  17. [17] H. Haiji, K. Okada, T. Hiratani, M. Abe, and M. Ninomiya: J. Magn. Magn. Mater., 1996, vol. 160, pp. 109–14.

    Article  Google Scholar 

  18. [18] D. Sagapuram, H. Yeung, Y. Guo, A. Mahato, R. M’Saoubi, W. D. Compton, K. P. Trumble, and S. Chandrasekar: CIRP Ann., 2015, vol. 64, pp. 49–52.

    Article  Google Scholar 

  19. [19] A. B. Kustas, D. Sagapuram, S. Chandrasekar, and K. P. Trumble: IOP Conf. Ser.: Mater. Sci. Eng., 2015, vol. 82, pp. 1–4.

    Article  Google Scholar 

  20. [20] M. G. Cockcroft and D.J. Latham: J. Inst. Metals, 1968, vol. 96, pp. 33–39.

    Google Scholar 

  21. W. A. Backofen: Deformation Processing, Addison-Wesley Publishing Company, Inc., 1972, pp. 242–61.

  22. [22] Y. Guo, M. Efe, W. Moscoso, D. Sagapuram, K. P. Trumble, and S. Chandrasekar: Scr. Mater., 2012, vol. 66, pp. 235–38.

    Article  Google Scholar 

  23. [23] M. A. Meyers, G. Subhash, B. K. Kad, and L. Prasad: Mech. Mater., 1994, vol. 17, pp. 175–93.

    Article  Google Scholar 

  24. [24] U. Andrade, M. A. Meyers, K. S. Vecchio, and A. H. Chokshi: Acta Mater., 1994, vol. 42, pp. 3183–95.

    Article  Google Scholar 

  25. [25] S. Li, I. J. Beyerlein, and M. A. M. Bourke: Mater. Sci. Eng., A, 2005, vol. 394, pp. 66–77.

    Article  Google Scholar 

  26. [26] A. Belyakov, T. Sakai, H. Miura, R. Kaibyshev, and K. Tsuzaki: Acta Mater., 2002, vol. 50, pp. 1547–57.

    Article  Google Scholar 

  27. [27] Y. H. Jin and M. Y. Huh: Int. J. Mechanochem. Mech. Alloying, 2004, vol. 9, pp. 5311–14.

    Google Scholar 

  28. [28] C. T. Yu, P. L. Sun, P. W. Kao, and C. P. Chang: Mater. Sci. Eng., A, 2004, vol. 366, pp. 310–17.

    Article  Google Scholar 

  29. [29] A. Takayama, X. Yang, H. Miura, and T. Sakai: Mater. Sci. Eng., A, 2008, vol. 478, pp. 221–28.

    Article  Google Scholar 

  30. [30] H. Jazaeri and F. J. Humphreys: Acta Mater., 2004, vol. 52, pp. 3239–50.

    Article  Google Scholar 

  31. [31] H. Jazaeri and F. J. Humphreys: Acta Mater., 2004, vol. 52, pp. 3251–62.

    Article  Google Scholar 

  32. [32] F. J. Humphreys: Acta Mater., 1997, vol. 45, pp. 4231–40.

    Article  Google Scholar 

  33. [33] B. D. Cullity and C. D. Graham: Introduction to Magnetic Materials, John Wiley & Sons, Inc., Hoboken, N. J., 2011, pp. 440–41.

    Google Scholar 

Download references

Acknowledgments

This study was supported in part by NSF CMMI 1363524, the U.S. Army Research Office Award W911NF-15-1-0591, and a Purdue University Bilsland Fellowship (to AK). The authors are grateful to Dr. Yang Guo for the high-speed imaging and Dr. Kevin Chaput for assistance with casting of the Fe-Si alloy ingots.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kevin P. Trumble.

Additional information

Manuscript submitted September 24, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kustas, A.B., Sagapuram, D., Trumble, K.P. et al. Texture Development in High-Silicon Iron Sheet Produced by Simple Shear Deformation. Metall Mater Trans A 47, 3095–3108 (2016). https://doi.org/10.1007/s11661-016-3437-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3437-3

Keywords

Navigation