Abstract
Sheet processing of high Si-Fe alloys (up to 6.5 wt pct Si) is demonstrated by application of highly confined shear deformation in cutting-extrusion. This alloy system, of major interest to electromagnetic applications, is characterized by poor workability. By a suitable interactive combination of simple shear, high strain rates, near-adiabatic heating, and large hydrostatic pressure in the deformation zone, flow localization, and cracking inherent to this alloy system are suppressed. This enables creation of sheet and foil forms from bulk ingots, cast or wrought, in a single deformation step, unlike rolling. The sheet is characterized by strong shear textures, described by partial {110} and 〈111〉 fibers, and fine-grained microstructures (~20 µm grain size). The orientation (inclination) of these fibers, with respect to the sheet surface, can be varied over a range of 35 deg through selection of the deformation path. In contrast to rolling textures, the current shear deformation textures are negligibly influenced by recrystallization annealing. A recovery-based continuous recrystallization mechanism is proposed to explain the texture retention. Some general implications for shear-based processing of alloys of limited workability are discussed.
Similar content being viewed by others
References
B. A. Zeitlin: in ASM Handbook Volume 14 Forming and Forging, ASM International, Materials Park, OH, 1988, pp. 739–81
M. Efe, W. Moscoso, K. P. Trumble, W. D. Compton, and S. Chandrasekar: Acta Mater., 2012, vol. 60, pp. 2031–42.
D. Sagapuram, M. Efe, W. Moscoso, S. Chandrasekar, and K. P. Trumble: Acta Mater., 2013, vol. 61, pp. 6843–56.
[4] M. F. Littmann: J. Appl. Phys., 1967, vol. 38, p. 1104–08.
[5] C. Chen: Magnetism and Metallurgy of Soft Magnetic Materials, Dover Publications Inc., Mineola, N. Y., 1986, pp. 376–84.
[6] S. Mishra: Acta Mater., 1984, vol. 32, pp. 2185–2201.
[7] S. Zaefferer and N. Chen: Solid State Phenom., 2005, vol. 105, pp. 29–36.
[8] Y. Shimizu, Y. Ito, and Y. Iida: Metall. Mater. Trans. A, 1986, vol. 17, pp. 1323–34.
[9] R. PremKumar, I. Samajdar, N. N. Viswanathan, V. Singal, and V. Seshadri: J. Magn. Magn. Mater., 2003, vol. 264, pp. 75–85.
[10] Y. H. Sha, F. Zhang, S. C. Zhou, W. Pei, and L. Zuo: J. Magn. Magn. Mater., 2008, vol. 320, pp. 393–96.
[11] C. F. Chang, V. Laxmanan, and S. K. Das: IEEE Trans. Magn., 1984, vol. 20, pp. 553-58.
[12] H. Fu, Z. Zhang, Y. Jiang, and J. Xie: Mater. Lett., 2011, vol. 65, pp. 1416–19.
[13] Y. Takada, M. Abe, S. Masuda, and J. Inagaki: J. Appl. Phys., 1988, vol. 64, p. 5367–69.
[14] G. Tian and X. Bi: J. Alloys Compd., 2010, vol. 502, pp. 1–4.
[15] C. Bolfarini, M. C. A. Silva, A. M. Jorge, C. S. Kiminami, and W. J. Botta: J. Magn. Magn. Mater., 2008, vol. 320, pp. 653–56.
[16] R. Li, Q. Shen, L. Zhang, and T. Zhang: J. Magn. Magn. Mater., 2004, vol. 281, pp. 135–39.
[17] H. Haiji, K. Okada, T. Hiratani, M. Abe, and M. Ninomiya: J. Magn. Magn. Mater., 1996, vol. 160, pp. 109–14.
[18] D. Sagapuram, H. Yeung, Y. Guo, A. Mahato, R. M’Saoubi, W. D. Compton, K. P. Trumble, and S. Chandrasekar: CIRP Ann., 2015, vol. 64, pp. 49–52.
[19] A. B. Kustas, D. Sagapuram, S. Chandrasekar, and K. P. Trumble: IOP Conf. Ser.: Mater. Sci. Eng., 2015, vol. 82, pp. 1–4.
[20] M. G. Cockcroft and D.J. Latham: J. Inst. Metals, 1968, vol. 96, pp. 33–39.
W. A. Backofen: Deformation Processing, Addison-Wesley Publishing Company, Inc., 1972, pp. 242–61.
[22] Y. Guo, M. Efe, W. Moscoso, D. Sagapuram, K. P. Trumble, and S. Chandrasekar: Scr. Mater., 2012, vol. 66, pp. 235–38.
[23] M. A. Meyers, G. Subhash, B. K. Kad, and L. Prasad: Mech. Mater., 1994, vol. 17, pp. 175–93.
[24] U. Andrade, M. A. Meyers, K. S. Vecchio, and A. H. Chokshi: Acta Mater., 1994, vol. 42, pp. 3183–95.
[25] S. Li, I. J. Beyerlein, and M. A. M. Bourke: Mater. Sci. Eng., A, 2005, vol. 394, pp. 66–77.
[26] A. Belyakov, T. Sakai, H. Miura, R. Kaibyshev, and K. Tsuzaki: Acta Mater., 2002, vol. 50, pp. 1547–57.
[27] Y. H. Jin and M. Y. Huh: Int. J. Mechanochem. Mech. Alloying, 2004, vol. 9, pp. 5311–14.
[28] C. T. Yu, P. L. Sun, P. W. Kao, and C. P. Chang: Mater. Sci. Eng., A, 2004, vol. 366, pp. 310–17.
[29] A. Takayama, X. Yang, H. Miura, and T. Sakai: Mater. Sci. Eng., A, 2008, vol. 478, pp. 221–28.
[30] H. Jazaeri and F. J. Humphreys: Acta Mater., 2004, vol. 52, pp. 3239–50.
[31] H. Jazaeri and F. J. Humphreys: Acta Mater., 2004, vol. 52, pp. 3251–62.
[32] F. J. Humphreys: Acta Mater., 1997, vol. 45, pp. 4231–40.
[33] B. D. Cullity and C. D. Graham: Introduction to Magnetic Materials, John Wiley & Sons, Inc., Hoboken, N. J., 2011, pp. 440–41.
Acknowledgments
This study was supported in part by NSF CMMI 1363524, the U.S. Army Research Office Award W911NF-15-1-0591, and a Purdue University Bilsland Fellowship (to AK). The authors are grateful to Dr. Yang Guo for the high-speed imaging and Dr. Kevin Chaput for assistance with casting of the Fe-Si alloy ingots.
Author information
Authors and Affiliations
Corresponding author
Additional information
Manuscript submitted September 24, 2015.
Rights and permissions
About this article
Cite this article
Kustas, A.B., Sagapuram, D., Trumble, K.P. et al. Texture Development in High-Silicon Iron Sheet Produced by Simple Shear Deformation. Metall Mater Trans A 47, 3095–3108 (2016). https://doi.org/10.1007/s11661-016-3437-3
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11661-016-3437-3