Skip to main content

Advertisement

Log in

Microstructure, Mechanical Properties, and Electrochemical Behavior of Ti-Nb-Fe Alloys Applied as Biomaterials

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

New β metastable Ti alloys based on Ti-30Nb alloy with the addition of 1, 3, or 5 wt pct Fe have been developed using the bond order and the metal d-orbital energy level (\( \overline{\text{Bo}} {-} \overline{\text{Md}} \)) design theory. The samples were prepared by arc melting, hot working, and solution heat treatment above the β transus followed by water quenching (WQ) or furnace cooling (FC). The effect of the cooling rate on the microstructure of Ti-30Nb-3Fe wt pct was investigated in detail using a modified Jominy end quench test. The results show that Fe acts as a strong β-stabilizing alloying element. The addition of Fe also leads to a reduction in the ω and α phases volumetric fractions, although the ω phase was still detected in the WQ Ti-30Nb-5Fe samples, as shown by TEM, and α phase clusters were detected by SEM in the FC Ti-30Nb-3Fe samples. Among the WQ samples, the addition of 5 wt pct Fe improves the ultimate tensile strength (from 601 to 689 MPa), reduces the final elongation (from 28 to 16 pct), and impairs the electrochemical corrosion resistance, as evaluated by potentiodynamic polarization tests in Ringer’s solution. The microstructural variation arising from the addition of Fe did not change the elastic modulus (approximately 80 GPa for all experimental WQ samples). This study shows that small Fe additions can tailor the microstructure of Ti-Nb alloys, modifying α and ω phase precipitation and improving mechanical strength.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  1. S.A. Souza, R.B. Manicardi, P.L. Ferrandini, C.R.M. Afonso, A.J. Ramirez, and R. Caram. J Alloys Compd 2010, vol. 504, pp. 330-340.

    Article  Google Scholar 

  2. M. Long and H. J. Rack. Biomaterials, 1998, 19:1621-1639.

    Article  Google Scholar 

  3. A. Biesiekierski, J. Wang, M.A.H. Gepreel, and C. Wen. Acta Biomater, 2012, vol. 8, pp. 1661-1669.

    Article  Google Scholar 

  4. D. Kuroda, H. Kawasaki, A. Yamamoto, S. Hiromoto, and T. Hanawa. Mater Sci Eng C, 2005, vol. 25, pp. 312–320.

    Article  Google Scholar 

  5. M. Abdel-Hady Gepreel, and M. Niinomi. J Mech Behav Biomed Mater, 2013, vol. 20, pp. 407-415.

    Article  Google Scholar 

  6. A.V. Dobromyslov, and V.A. Elkin. Scr Mater, 2001, vol. 44, pp. 905–910.

    Article  Google Scholar 

  7. C. Lin, G. Yin, Y. Zhao, P. Ge, and Z. Liu. Mater Chem Phys, 2011, vol. 125, pp. 411–417.

    Article  Google Scholar 

  8. D.J. Lin, J.H.C. Lin and C.P. Ju. Biomater, 2002, vol. 23, pp. 1723-1730.

    Article  Google Scholar 

  9. H.C. Hsu, S.K. Hsu, S.C. Wu, C.J. Lee, and W.F. Ho. Mater Charact, 2010, vol. 61, pp. 851-858.

    Article  Google Scholar 

  10. C.M. Lee, W.F. Ho, C.P. Ju, and J.H. ChernLin. J. Mater. Sci., 2002, vol. 13, pp. 695-700.

    Google Scholar 

  11. P.G. Esteban, E.M. Ruiz-Navas, L. Bolzoni, and E. Gordo. Met Powder Rep, 2008, vol. 63, pp. 24-27.

    Article  Google Scholar 

  12. M. Morinaga, N. Yukawa, T. Maya, K. Sone, and H. Adachi: Proceedings of the 6th World Conference on Titanium, France, 1988, pp. 1601–06.

  13. M. Abdel-Hady, K. Hinoshita, and M. Morinaga. Scr Mater, 2006, vol. 55, pp. 477-480.

    Article  Google Scholar 

  14. S.A. Souza, C.R.M. Afonso, P.L. Ferrandini, A.A. Coelho, and R. Caram. Mater Sci Eng C, 2009, vol. 29, pp. 1023-1028.

    Article  Google Scholar 

  15. G.T. Aleixo, E.S. Lopes, R. Contieri, A. Cremasco, C.R. Afonso, and R. Caram. Solid State Phenom, 2011, vol. 172, pp. 190-195.

    Article  Google Scholar 

  16. ASTM E8M, American Society for Testing Materials, E3; Standard Test Methods for Tension Testing of Metallic Materials. 2013.

  17. ASTM F2129, American Society for Testing Materials, F2129; Standard Test Method for Conducting Cyclic Potentiodynamic Polarization Measurements to Determine the Corrosion Susceptibility of Small Implant Devices, 2008.

  18. C. Kittel. Introduction to Solid State Physics. 8th ed., p. 71, Wiley, New York 2004.

    Google Scholar 

  19. B.A. Hatt, and V.G. Rivlin. J Phys D: Appl Phys, 1968, vol. 1, pp. 1145-1149.

    Article  Google Scholar 

  20. D.L. Moffat, and D.C. Larbalestier. Metall Trans A, 1988, vol. 19, pp. 1687-1694.

    Article  Google Scholar 

  21. D.L. Moffat, U.R. Kattner. Metall Trans A, 1988, vol. 19, pp. 2389-2397.

    Article  Google Scholar 

  22. A.I. Antipov, and V.N. Moiseev. Met Sci Heat Treat, 1997, vol. 39, pp. 499-503.

    Article  Google Scholar 

  23. R. Banerjee, S. Nag, J. Stechschulte, and H.L. Fraser. Biomater, 2004, vol. 25, pp. 3413-3419.

    Article  Google Scholar 

  24. M. Bönisch, M. Calin, T. Waitz, A. Panigrahi, M. Zehetbauer, A. Gebert, W. Skrotzki, and J. Eckert: Sci. Technol. Adv. Mater., 2013, vol. 14, 9 pp.

  25. E.S.N. Lopes, A. Cremasco, C.R.M. Afonso, and R. Caram. Mater Charact, 2011, vol. 62, pp. 673-680.

    Article  Google Scholar 

  26. D.N. Williams. J Mat Sci, 1975, vol. 10, pp. 1239-1241.

    Article  Google Scholar 

  27. R.H. Van Stone, J.R. Low, and J.L. Shannon. Metall Trans A, 1978, vol. 9, pp. 539-552.

    Article  Google Scholar 

  28. N. Saeidi, F. Ashrafizadeh, B. Niroumand, M. R. Forouzan, S. Mohseni-Mofidi and F. Barlat, Mat Sci Eng A, 2015, vol. 644, pp. 210-217.

    Article  Google Scholar 

  29. R.H. Van Stone, T.B. Cox, J.R. Low, and J.A. Psioda. Int Met Rev, 1985, vol. 30, pp. 157-180.

    Article  Google Scholar 

  30. P.F. Thomason. Acta Metall, 1985, vol. 33, pp. 1087-1095.

    Article  Google Scholar 

  31. D.Q. Martins, W.R. Osório, M. E. P. Souza, R. Caram and A. Garcia. Electroc. Acta, 2008, vol. 53, pp. 2809-2817.

    Article  Google Scholar 

  32. M. Atapour, A.L. Pilchak, G.S. Frankel, and J.C. Williams. Mater Sci Eng C, 2011, vol 31, pp. 885-891.

    Article  Google Scholar 

  33. X.H. Min, S. Emura, T. Nishimura, K. Tsuchiya, and K. Tsuzaki. Mater Sci Eng A, 2010, vol. 527, pp. 5499-5506.

    Article  Google Scholar 

  34. D.W. Shoesmith, and J.J. Noël. Shreir’s Corros, 2010, vol. 3, pp. 2042-2052.

    Article  Google Scholar 

  35. G.K. Mor, H.E. Prakasam, O.K. Varghese, K. Shankar, and C.A. Grimes. Nano Lett 2007, vol. 7, pp. 2356-2364.

    Article  Google Scholar 

  36. M. Metikos-Hukovic, A. Kwokal, J. Piljac. Biomater 2003, vol. 24, pp. 3765-3775.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Brazilian research funding agencies FAPESP (São Paulo Research Foundation), CNPq (National Council for Scientific and Technological Development) for their financial support, CBMM for supplying Nb, Dr. Haroldo G. Oliveira and Dr. Rodnei Bertazolli for providing the electrochemical facilities, and Professor Hamish L. Fraser for the FIB/TEM facilities in the CEMAS/Ohio State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rubens Caram.

Additional information

Manuscript submitted June 9, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lopes, É.S.N., Salvador, C.A.F., Andrade, D.R. et al. Microstructure, Mechanical Properties, and Electrochemical Behavior of Ti-Nb-Fe Alloys Applied as Biomaterials. Metall Mater Trans A 47, 3213–3226 (2016). https://doi.org/10.1007/s11661-016-3411-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3411-0

Keywords

Navigation