Advertisement

Metallurgical and Materials Transactions A

, Volume 47, Issue 5, pp 2410–2420 | Cite as

Geometric and Chemical Composition Effects on Healing Kinetics of Voids in Mg-bearing Al Alloys

  • Miao Song
  • Kui Du
  • Chunyang Wang
  • Shengping Wen
  • Hui Huang
  • Zuoren Nie
  • Hengqiang Ye
Article

Abstract

The healing kinetics of nanometer-scale voids in Al-Mg-Er and Al-Mg-Zn-Er alloy systems were investigated with a combination of in situ transmission electron microscopy and electron tomography at different temperatures. Mg was observed completely healing the voids, which were then rejuvenated to the alloy composition with further aging, in the Al-Mg-Er alloy. On the contrary, Mg51Zn20 intermetallic compound was formed in voids in the Al-Mg-Zn-Er alloy, which leads to complete filling of the voids but not rejuvenation for the material. For voids with different geometrical aspects, different evolution processes were observed, which are related to the competition between bulk and surface diffusion of the alloys. For voids with a large size difference in their two ends, a viscous flow of surface atoms can be directly observed with in situ electron microscopy, when the size of one end becomes less than tens of nanometers.

Keywords

Healing Process Surface Diffusion Bulk Diffusion Supplementary Movie Bulk Diffusivity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank Y.M. Wang and Z.Y. Sun for stimulating discussion and X.L. Liu, X. Lei for providing Al-Mg-Er and Al-Mg-Zn-Er alloy samples. The authors also acknowledge the financial support from the Special Funds for the Major State Basic Research Projects of China (Grant No. 2012CB619503) and the Natural Sciences Foundation of China (Grant Nos. 51390473, 51521091, 11332010).

Supplementary material

11661_2016_3380_MOESM1_ESM.avi (4.9 mb)
Movie of Type 1 void healing process, obtained by in situ heating TEM. Supplementary material 1 (AVI 4977 kb)
11661_2016_3380_MOESM2_ESM.avi (6 mb)
Movie of Type 2 void healing process, obtained by in situ heating TEM. Supplementary material 2 (AVI 6118 kb)

References

  1. 1.
    1. M. Song, K. Du, S. P. Wen, Z. R. Nie and H. Q. Ye: Acta Mater., 2014, vol. 69, pp. 236245. CrossRefGoogle Scholar
  2. 2.
    2. A. Hosoi, T. Nagahama and Y. Ju: Mater. Sci. Eng. A., 2012, vol. 533, pp. 3842. CrossRefGoogle Scholar
  3. 3.
    3. K. W. Gao, L. J. Qiao and W. Y. Chu: Scr Mater., 2001, vol. 44, pp. 10551059. CrossRefGoogle Scholar
  4. 4.
    4. N. Shinya, J. Kyono and B. Laha: J. Intell. Mater. Syst. Struct., 2006, vol. 17, pp. 11271133. CrossRefGoogle Scholar
  5. 5.
    J. M. Lucci, R. Amano, P. K. Rohatgi and B. Schulz: Proceedings of ASME Turbo ExpoENIC2008 (ASME: Florida, 2008), pp. 79–88.Google Scholar
  6. 6.
    6. S. van der Zwaag, N. H. van Dijk, H. M. Jonkers, S. D. Mookhoek and W. G. Sloof: Phil. Trans. R. Soc. A, 2009, vol. 367, pp. 16891704. CrossRefGoogle Scholar
  7. 7.
    7. M. Song, K. Du, Z. Y. Huang, H. Huang, Z. R. Nie and H. Q. Ye: Acta Mater., 2014, vol. 81, pp. 409419. CrossRefGoogle Scholar
  8. 8.
    8. J. J. Liu, H. Huang, R. Liu, L. Rong, W. Wang and Z. R. Nie: Mater. Sci. Forum., 2014, vol. 817, pp. 698705. CrossRefGoogle Scholar
  9. 9.
    9. P. Karen, A. Kjekshus, Q. Huang and V.L. Karen: J. Alloys. Compd., 1999, vol. 282, pp. 7275. CrossRefGoogle Scholar
  10. 10.
    10. R. A. Johnson and Nghi Q. Lam: Phys. Rev. B., 1977, vol. 15, pp. 17941800. CrossRefGoogle Scholar
  11. 11.
    11. I. Higashi, N. Shiotani, M. Uda, T. Mizoguchi and H. Katoh: J. Solid State Chem., 1981, vol. 36, pp. 225233. CrossRefGoogle Scholar
  12. 12.
    12. J. Sun: J. Mater. Eng. Perform., 2002, vol. 11, pp. 322331. CrossRefGoogle Scholar
  13. 13.
    13. A. Janotti, M. Krčmar, C. L. Fu and R. C. Reed: Phys. Rev. Lett., 2004, vol. 92, p. 085901. CrossRefGoogle Scholar
  14. 14.
    14. W. B. Beeré and G. W. Greenwood: Meter. Sci., 1971, vol. 5, pp. 107113. CrossRefGoogle Scholar
  15. 15.
    15. T. D. Xu: Philos. Mag., 2003, vol. 83, pp. 889899. CrossRefGoogle Scholar
  16. 16.
    16. R. P. Smith: Acta. Metall., 1953, vol. 1, pp. 578587. CrossRefGoogle Scholar
  17. 17.
    17. T. B. Massalski: Binary alloy phase diagram, ASM International, Metals Park, OH, 1991. Google Scholar
  18. 18.
    18. C. Lei and C. Molinari: J. Mater. Sci., 1984, vol. 19, pp. 23362352. CrossRefGoogle Scholar
  19. 19.
    T. Fujita, Z. Horita and T. G. Langdon: Philos. Mag. A., 2002, vol. 82, pp. 2249–2262.CrossRefGoogle Scholar
  20. 20.
    C. Barouh, T. Schuler, C.-C. Fu, T. Jourdan: Phys. Rev. B., 2015, vol. 92.Google Scholar
  21. 21.
    21. A. Mazilkin, B. Straumal, E. Rabkin, B. Baretzky, S. Enders, S. Protasova, O. Kogtenkova and R. Valiev: Acta Mater., 2006, vol. 54, pp. 39333939. CrossRefGoogle Scholar
  22. 22.
    22. B. B. Straumal, B. Baretzky, A. A. Mazilkin, F. Phillipp, O. A. Kogtenkova, M. N. Volkov and R. Z. Valiev: Acta Mater., 2004, vol. 52, pp. 44694478. CrossRefGoogle Scholar
  23. 23.
    23. R. M. Bradley and J. M. E. Harper: J. Vac. Sci. Technol. A., 1988, vol. 6, pp. 23902395. CrossRefGoogle Scholar
  24. 24.
    24. S. G. Mayr and R. S. Averback: Phys. Rev. Lett., 2001, vol. 87, p. 196106. CrossRefGoogle Scholar
  25. 25.
    T. M. Mayer, E. Chason, A. J. Howard: J. Appl. Phys., 1994, vol. 76, pp. 1633–1643.CrossRefGoogle Scholar
  26. 26.
    26. C. Herring: The Physics of Powder Metallurgy, p. 143, McGraw-Hill Inc., New York, 1951. Google Scholar
  27. 27.
    27. J. Sun, L. B. He, Y. Lo, T. Xu, H. C. Bi, L. T. Sun, Z. Zhang, S. X. Mao and J. Li: Nat. Mater., 2014, vol. 13, pp. 1007–1012.CrossRefGoogle Scholar
  28. 28.
    28. L. Tian, J. Li, J. Sun, E. Ma and Z. W. Shan: Sci. Rep., 2013, vol. 3, p. 2113. Google Scholar
  29. 29.
    29. D. Lynn Johnson: J. Appl. Phys., 1968, vol. 40, pp. 192200. CrossRefGoogle Scholar
  30. 30.
    J. R. Black: Proc. 6th Ann Int Rel Phys Symp., 1967, pp. 148–159.Google Scholar
  31. 31.
    31. L. E. Murr: Interfacial phenomena in Metals and Alloys, p. 292, Addison-Wesley Publishing Co., Massachusetts, 1975. Google Scholar
  32. 32.
    32. A. K. Green and E. Bauer: Surf. Sci., 1978, vol. 74, pp. 676681. CrossRefGoogle Scholar
  33. 33.
    A. Ismail, P. Hofmann, E. W. Plummer, C. Bungaro, W. Kress: Phys. Rev. B., 2000, vol. 62, pp. 17012–17019.CrossRefGoogle Scholar
  34. 34.
    34. H. Wawra and Z. Metallkd: Surf. Sci., 1975, vol. 66, pp. 395401. Google Scholar
  35. 35.
    35. W.R. Tysona and W.A. Miller: Surf. Sci., 1977, vol. 62, pp. 267276. CrossRefGoogle Scholar
  36. 36.
    36. H. J. Frost, C. V. Thompson and D. T. Walton: Acta. Metall., 1990, vol. 38, pp. 1455–1462.CrossRefGoogle Scholar
  37. 37.
    37. S. J. Rothman, N. L. Peterson, L. J. Nowicki and L. C. Robinson: Phys. Stat. Sol. B., 1974, vol. 63, pp. K29K33. CrossRefGoogle Scholar
  38. 38.
    38. S. Fujikawa and K. Hirano: Trans. Jpn. Inst. Met., 1976, vol. 17, pp. 809818. CrossRefGoogle Scholar
  39. 39.
    39. M. Beyeler and Y. Adda: J. Phys., 1968, vol. 29, pp. 345352. CrossRefGoogle Scholar
  40. 40.
    40. T.E. Volin and R.W. Balluffi: Phys. Status Sollidi. 1986, vol. 25, pp. 163173. CrossRefGoogle Scholar
  41. 41.
    41. R. N. Lumley and G. B. Schaffer: Scr. Mater., 2006, vol. 55, pp. 207210. CrossRefGoogle Scholar
  42. 42.
    42. T. A. Schaedler, A. J. Jacobsen, A. Torrents, A. E. Sorensen, J. Lian, J. R. Greer, L. Valdevit and W. B. Carter: Sci., 2011, vol. 334, pp. 962965. CrossRefGoogle Scholar
  43. 43.
    X. Zheng, H. Lee, T. H. Weisgraber, M. Shusteff, J. DeOtte, E. B. Duoss, J. D. Kuntz, M. M. Biener, Q. Ge, J. A. Jackson, S. O. Kucheyev, N. X. Fang and C. M. Spadaccini: Sci., 2014, vol. 344, pp. 1373–1377.CrossRefGoogle Scholar
  44. 44.
    R. B. Dunbar, H. C. Hesse, D. S. Lembke and L. Schmidt-Mende: Phys. Rev. B., 2012, vol. 85, p. 035301.CrossRefGoogle Scholar
  45. 45.
    45. A. Torrents, T. A. Schaedler, A. J. Jacobsen, W. B. Carter and L. Valdevit: Acta Mater., 2012, vol. 60, pp. 35113523. CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  • Miao Song
    • 1
  • Kui Du
    • 1
  • Chunyang Wang
    • 1
  • Shengping Wen
    • 2
  • Hui Huang
    • 2
  • Zuoren Nie
    • 2
  • Hengqiang Ye
    • 1
  1. 1.Shenyang National Laboratory for Materials Science, Institute of Metal ResearchChinese Academy of SciencesShenyangP.R. China
  2. 2.School of Materials Science and EngineeringBeijing University of TechnologyBeijingP.R. China

Personalised recommendations