Advertisement

Metallurgical and Materials Transactions A

, Volume 47, Issue 5, pp 2024–2036 | Cite as

Bauschinger Effect in an Austenitic Steel: Neutron Diffraction and a Multiscale Approach

  • Jamal FajouiEmail author
  • David Gloaguen
  • Vincent Legrand
  • Guy Oum
  • Joe Kelleher
  • Winfried Kockelmann
Article

Abstract

The generation of internal stresses/strains arising from mechanical deformations in single-phase engineering materials was studied. Neutron diffraction measurements were performed to study the evolution of intergranular strains in austenitic steel during sequential loadings. Intergranular strains expand due to incompatibilities between grains and also resulting from single-crystal elastic and plastic anisotropy. A two-level homogenization approach was adopted in order to predict the mechanical state of deformed polycrystals in relation to the microstructure during Bauschinger tests. A mechanical description of the grain was developed through a micro–meso transition based on the Kröner model. The meso–macro transition using a self-consistent approach was applied to deduce the global behavior. Mechanical tests and neutron diffraction measurements were used to validate and assess the model.

Keywords

Dislocation Density Slip System Critical Resolve Shear Stress Bauschinger Effect Eshelby Tensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    A.A. Saleh, E.V. Pereloma, B. Clausen, D.W. Brown, C.N. Tomé, A.A. Gazder: Acta Mater. 61 (2013) 5247–5262. doi: 10.1016/j.actamat.2013.05.017.CrossRefGoogle Scholar
  2. 2.
    D. Gloaguen, G. Oum, V. Legrand, J. Fajoui, S. Branchu: Acta Mater. 61 (2013) 5779–5790. doi: 10.1016/j.actamat.2013.06.022.CrossRefGoogle Scholar
  3. 3.
    J. Fajoui, D. Gloaguen, B. Courant, R. Guillén: Comput. Mech. 44 (2009) 285–296. doi: 10.1007/s00466-009-0374-7.CrossRefGoogle Scholar
  4. 4.
    D. Muller, X. Lemoine, M. Berveiller: J. Eng. Mater. Technol. 116 (1994) 378–383. doi: 10.1115/1.2904301.CrossRefGoogle Scholar
  5. 5.
    D. Muller, M. Berveiller, J. Kratochvíl: Mater. Sci. Forum. 123-125 (1993) 195–204. doi: 10.4028/www.scientific.net/MSF.123-125.195.CrossRefGoogle Scholar
  6. 6.
    X. FEAUGAS, P. PILVIN, M. CLAVEL: Acta Mater. 45 (1997) 2703–2714. doi: 10.1016/S1359-6454(96)00407-7.CrossRefGoogle Scholar
  7. 7.
    P. Evrard, I. Alvarez-Armas, V. Aubin, S. Degallaix: Mech. Mater. 42 (2010) 395–404. doi: 10.1016/j.mechmat.2010.01.007.CrossRefGoogle Scholar
  8. 8.
    Y. Li, V. Aubin, C. Rey, P. Bompard: Int. J. Fatigue. 42 (2012) 71–81. doi: 10.1016/j.ijfatigue.2011.07.003.CrossRefGoogle Scholar
  9. 9.
    T. Skippon, M.R. Daymond: Mater. Sci. Eng. A. 634 (2015) 77–85. doi: 10.1016/j.msea.2015.03.033.CrossRefGoogle Scholar
  10. 10.
    B. Haddag, T. Balan, F. Abed-Meraim: Int. J. Plast. 23 (2007) 951–979. doi: 10.1016/j.ijplas.2006.10.004.CrossRefGoogle Scholar
  11. 11.
    S. Mahesh, C.N. Tomé, R.J. McCabe, G.C. Kaschner, A. Misra, I.J. Beyerlein: Metall. Mater. Trans. A. 35 (2004) 3763–3774. doi: 10.1007/s11661-004-0282-6.CrossRefGoogle Scholar
  12. 12.
    S. Hiwatashi, A. Van Bael, P. Van Houtte, C. Teodosiu: Comput. Mater. Sci. 9 (1997) 274–284. doi: 10.1016/S0927-0256(97)00069-4.CrossRefGoogle Scholar
  13. 13.
    H. Mughrabi: Phys. Status Solidi A. 104 (1987) 107–120. doi: 10.1002/pssa.2211040108.CrossRefGoogle Scholar
  14. 14.
    B. Peeters, M. Seefeldt, C. Teodosiu, S.R. Kalidindi, P. Van Houtte, E. Aernoudt: Acta Mater. 49 (2001) 1607–1619. doi: 10.1016/S1359-6454(01)00066-0.CrossRefGoogle Scholar
  15. 15.
    J. Fajoui, D. Gloaguen, B. Girault: Acta Mech. 226 (2015) 2715–2727. doi: 10.1007/s00707-015-1347-x.CrossRefGoogle Scholar
  16. 16.
    I. Karaman, H. Sehitoglu, A.J. Beaudoin, Y.I. Chumlyakov, H.J. Maier, C.N. Tomé: Acta Mater. 48 (2000) 2031–2047. doi: 10.1016/S1359-6454(00)00051-3.CrossRefGoogle Scholar
  17. 17.
    E.M. Viatkina, W. a. M. Brekelmans, M.G.D. Geers: Comput. Mech. 41 (2008) 391–405. doi: 10.1007/s00466-007-0195-5.CrossRefGoogle Scholar
  18. 18.
    M. Knezevic, R.J. McCabe, R.A. Lebensohn, C.N. Tomé, C. Liu, M.L. Lovato, B. Mihaila: J. Mech. Phys. Solids., 2013, vol. 61, pp. 2034–46, DOI: 10.1016/j.jmps.2013.05.005.CrossRefGoogle Scholar
  19. 19.
    G. Franz, F. Abed-Meraim, M. Berveiller: Int. J. Plast. 48 (2013) 1–33. doi: 10.1016/j.ijplas.2013.02.001.CrossRefGoogle Scholar
  20. 20.
    H. Mughrabi: Acta Metall. 31 (1983) 1367–1379. doi: 10.1016/0001-6160(83)90007-X.CrossRefGoogle Scholar
  21. 21.
    X. Lemoine, M. Berveiller, D. Muller: Mater. Sci. Forum. 157-162 (1994) 1821–1826. doi: 10.4028/www.scientific.net/MSF.157-162.1821.CrossRefGoogle Scholar
  22. 22.
    F. David, I. Aubert, X. Lemoine, M. Berveiller: Comput. Mater. Sci. 9 (1997) 188–198. doi: 10.1016/S0927-0256(97)00074-8.CrossRefGoogle Scholar
  23. 23.
    D. Gloaguen, M. Francois: Phys. Status Solidi Appl. Mater. Sci. 203 (2006) 1940–1953. http://cat.inist.fr/?aModele=afficheN&cpsidt=17860381 (accessed September 3, 2014).
  24. 24.
    P. Lipinski, M. Berveiller: Int. J. Plast. 5 (1989) 149–172. doi: 10.1016/0749-6419(89)90027-2.CrossRefGoogle Scholar
  25. 25.
    P.D. Wu, S.R. MacEwen, D.J. Lloyd, M. Jain, P. Tugcu, K.W. Neale: J. Plast. 21 (2005) 723–739. doi: 10.1016/j.ijplas.2004.05.007.CrossRefGoogle Scholar
  26. 26.
    M. Choteau, P. Quaegebeur, S. Degallaix: Mech. Mater. 37 (2005) 1143–1152. doi: 10.1016/j.mechmat.2004.12.001.CrossRefGoogle Scholar
  27. 27.
    A.S. Keh, Y. Nakada: Can. J. Phys. 45 (1967) 1101–1120. doi: 10.1139/p67-081.CrossRefGoogle Scholar
  28. 28.
    D. Gloaguen, J. Fajoui, B. Girault: Acta Mater. 71 (2014) 136–144. doi: 10.1016/j.actamat.2014.02.031.CrossRefGoogle Scholar
  29. 29.
    R. Dakhlaoui, V. Klosek, M.H. Mathon, B. Marini: Acta Mater. 58 (2010) 499–509. doi: 10.1016/j.actamat.2009.09.028.CrossRefGoogle Scholar
  30. 30.
    R. Dakhlaoui, A. Baczmański, C. Braham, S. Wroński, K. Wierzbanowski, E.C. Oliver: Acta Mater. 54 (2006) 5027–5039. doi: 10.1016/j.actamat.2006.06.035.CrossRefGoogle Scholar
  31. 31.
    J.R. Santisteban, M.R. Daymond, J.A. James, L. Edwards: J. Appl. Crystallogr. 39 (2006) 812–825. doi: 10.1107/S0021889806042245.CrossRefGoogle Scholar
  32. 32.
    C.M. Moreton-Smith, S.D. Johnston, F.A. Akeroyd: J. Neutron Res. 4 (1996) 41–47. doi: 10.1080/10238169608200066.CrossRefGoogle Scholar
  33. 33.
    W. Kockelmann, L.C. Chapon, and P.G. Radaelli: Neutron texture analysis on GEM at ISIS, in: Phys. B Condens. Matter, Elsevier, 2006: pp. 639–43. http://cat.inist.fr/?aModele=afficheN&cpsidt=18370454 (accessed September 3, 2014).
  34. 34.
    X. Feaugas: Acta Mater. 47 (1999) 3617–3632. doi: 10.1016/S1359-6454(99)00222-0.CrossRefGoogle Scholar
  35. 35.
    G. Vincze, E.F. Rauch, J.J. Gracio, F. Barlat, A.B. Lopes: Acta Mater. 53 (2005) 1005–1013. doi: 10.1016/j.actamat.2004.10.046.CrossRefGoogle Scholar
  36. 36.
    K.E. Zur: Acta Metall., 1961, vol. 9, pp.155–61. http://www.refdoc.fr/Detailnotice?idarticle.
  37. 37.
    C. Schmitt, P. Lipinski, M. Berveiller: Int. J. Plast. 13 (1997) 183–199. doi: 10.1016/S0749-6419(95)00007-0.CrossRefGoogle Scholar
  38. 38.
    D. Gloaguen, M. François, R. Guillen: J. Appl. Crystallogr. 37 (2004) 934–940. doi: 10.1107/S0021889804022034.CrossRefGoogle Scholar
  39. 39.
    J.D. Eshelby: Proc. R. Soc. Lond. Ser. Math. Phys. Sci. 241 (1957) 376–396. doi: 10.1098/rspa.1957.0133.CrossRefGoogle Scholar
  40. 40.
    M. Berveiller, A. Zaoui: J. Mech. Phys. Solids. 26 (1978) 325–344. doi: 10.1016/0022-5096(78)90003-0.CrossRefGoogle Scholar
  41. 41.
    C. Beradai, M. Berveiller, P. Lipinski: Int. J. Plast. 3 (1987) 143–162. doi: 10.1016/0749-6419(87)90004-0.CrossRefGoogle Scholar
  42. 42.
    E. Nes: Prog. Mater. Sci. 41 (1997) 129–193. doi: 10.1016/S0079-6425(97)00032-7.CrossRefGoogle Scholar
  43. 43.
    U. Essmann, H. Mughrabi: Philos. Mag. A. 40 (1979) 731–756. doi: 10.1080/01418617908234871.CrossRefGoogle Scholar
  44. 44.
    P. Franciosi: Acta Metall. 33 (1985) 1601–1612. doi: 10.1016/0001-6160(85)90154-3.CrossRefGoogle Scholar
  45. 45.
    G. Franz, F. Abed-Meraim, J.-P. Lorrain, T. Ben Zineb, X. Lemoine, M. Berveiller: Int. J. Plast. 25 (2009) 205–238. doi: 10.1016/j.ijplas.2008.02.006.CrossRefGoogle Scholar
  46. 46.
    J.-P. Lorrain, T. Ben-Zineb, F. Abed-Meraim, M. Berveiller: Int. J. Form. Process. 8 (2005) 135–158. doi: 10.3166/ijfp.8.135-158.CrossRefGoogle Scholar
  47. 47.
    E.F. Rauch, J.J. Gracio, F. Barlat: Acta Mater. 55 (2007) 2939–2948. doi: 10.1016/j.actamat.2007.01.003.CrossRefGoogle Scholar
  48. 48.
    K. Kitayama, C.N. Tomé, E.F. Rauch, J.J. Gracio, F. Barlat: Int. J. Plast. 46 (2013) 54–69. doi: 10.1016/j.ijplas.2012.09.004.CrossRefGoogle Scholar
  49. 49.
    D. Gloaguen, M. Francois, R. Guillen, J. Royer: Acta Mater. 50 (2002) 871–880. http://cat.inist.fr/?aModele=afficheN&cpsidt=13481335 (accessed September 12, 2014).
  50. 50.
    D. Gloaguen, G. Oum, V. Legrand, J. Fajoui, M.-J. Moya, T. Pirling: Metall. Mater. Trans. A. 46 (2015) 5038–5046. doi: 10.1007/s11661-015-3073-3.CrossRefGoogle Scholar
  51. 51.
    L. Lutterotti, S. Matthies, and H.R. Wenk: in Proceeding Twelfth Int. Conf. Textures Mater. ICOTOM-12, NRC Press Ottawa, Canada, 1999, p. 1599.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  • Jamal Fajoui
    • 1
    Email author
  • David Gloaguen
    • 1
  • Vincent Legrand
    • 1
  • Guy Oum
    • 1
  • Joe Kelleher
    • 2
  • Winfried Kockelmann
    • 2
  1. 1.Université de Nantes, Institut de Recherche en Génie Civil et Mécanique (UMR CNRS 6183)Saint-Nazaire CedexFrance
  2. 2.ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Harwell Oxford DidcotOxfordshireEngland

Personalised recommendations