Skip to main content

Synthesis of Aluminum–Aluminum Nitride Nanocomposites by a Gas–Liquid Reaction II. Microstructure and Mechanical Properties

Abstract

In situ fabrication of the reinforcing particles in the metal matrix is an answer to many of the challenges encountered in manufacturing aluminum matrix nanocomposites. In this method, the nanoparticles are formed directly within the melt by means of a chemical reaction between a specially designed aluminum alloy and a gas. In this publication, we describe a process for synthesizing aluminum–aluminum nitride nanocomposites by reacting a nitrogen-containing gas with a molten aluminum–lithium alloy. We quantify the effect of the process parameters on the average particle size and particle distribution, as well as on the tendency of the particles to cluster in the alloy matrix, is quantified. Also in this publication, we present the measured room temperature and elevated temperature tensile properties of the nanocomposite material as well as its measured room temperature impact toughness.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Notes

  1. JSM840 scanning electron microscope equipped with stage automated digital image analysis, a light element quantum X-ray detector with a Kevex Delta system, and a wavelength dispersive X-ray analyzer.

  2. http://rsb.info.nih.gov/ij/download.html.

  3. Instron Servo-Hydraulic Tension–Compression System model 1332 equipped with an 8500 controller and a 5620 pound load cell.

  4. MTS extensometer model 634.25.

  5. Instron Environment Chamber model 3116.

  6. MTS high temperature extensometer model 633.11B-15.

  7. Instron Impact Machine model SI-1C3.

References

  1. Kevorkijan VM (1991) J Mater Sci 51 (11): 54-58.

    Google Scholar 

  2. Allison JE, and Cole GS (1993) J Mater Sci 45: 19-24.

    Google Scholar 

  3. National Aeronautics and Space Administration USA, Aeronautics and Space Report of the President Fiscal Year 1991 Activities, Washington, DC, 1991

  4. G. Paul and I. Manna: in Ceramic Nanocomposites, R. Banerjee, ed., Woodhead Publishing Co. Ltd., Cambridge, 2013, pp. 323–43.

  5. El-Kady ESY (2011) Mater Sci Appl 02: 390-398.

    Google Scholar 

  6. Yang Y and Li X (2004) J Manuf Sci Eng, 129: 497-501.

    Article  Google Scholar 

  7. Yang Y, Lan J and Li X (2004) Mater Sci Eng 380A: 378-383.

    Article  Google Scholar 

  8. Mula S, Padhi P, Panigrahi SC, Pabi SK and Ghosh S (2009) Mater Res Bull, 2009 44: 1154-1160.

    Article  Google Scholar 

  9. Li X, Yang Y and Weiss D (2007) AFS Trans 07-133: 1-12.

    Google Scholar 

  10. J.W. McCauley: Structure and Properties of Aluminum Nitride and AlON Ceramics, Army Research Laboratory Report ARL-TR-2740, 2002.

  11. Ajayan PM, Schadler LS and Braun PV (2003) Nanocomposite Science and Technology, Berlin, Germany, Wiley-VCH.

    Book  Google Scholar 

  12. Koch CC (2006) Nanostructured Materials: Processing, Properties, and Applications, Norwich, NY, US, William Andrew.

    Google Scholar 

  13. Chawla N and Chawla K (2006) Metal Matrix Composites, New York, US, Springer.

    Book  Google Scholar 

  14. Tolochko NK, Andrushevic AA and Shienok YA (2009) Adv Mater Res 79-82: 425-428.

    Article  Google Scholar 

  15. Cao G (2004) Nanostructures & Nanomaterials: Synthesis, Properties & Applications. Imperial College Press, London, UK.

    Book  Google Scholar 

  16. M.J. Koczak and K.S. Kumar: In Situ Process for Producing a Composite Containing Refractory Material, US Patent No. 4,808,372, 1989.

  17. C. Borgonovo: Ph.D. Thesis, Worcester Polytechnic Institute, May 2013.

  18. C. Borgonovo and M.M. Makhlouf: Proceedings of MS&T, Columbus, OH, 2011.

  19. C. Borgonovo and M.M. Makhlouf: Proceedings of High Tech Die Casting, Vicenza, Italy, 2012.

  20. C. Borgonovo and M.M. Makhlouf: Proceedings of AFS, Columbus, OH, 2012.

  21. C. Borgonovo and M.M. Makhlouf: Proceedings of the 15th European Conference on Composite Materials, Venice, Italy, 2012.

  22. C. Borgonovo, D. Apelian, and M.M. Makhlouf, JOM, 2011, Vol. 63 (2), pp. 57-64.

    Google Scholar 

  23. H.S. Share and D.L. Burris, Polymer, 2010, Vol. 51, pp. 719-729.

    Article  Google Scholar 

  24. H. Scholz and P. Greil, J. Eur. Ceram. Soc., 1990, Vol. 6 (4), pp. 237-242.

    Article  Google Scholar 

  25. C. Balerin, P. Aymard, F. Ducept, S. Vaslin, and G. Cuvelier, J. Food Eng., 2007, Vol. 78, pp. 802-809.

    Article  Google Scholar 

  26. G.I. Taylor: Proceedings of the Royal Society, 1932, A138, pp. 41–48.

    Article  Google Scholar 

  27. J.R. Davis: ‘ASM Specialty Handbooks: Aluminum and Aluminum Alloys’, ASM International, Materials Park, 1993.

    Google Scholar 

  28. J.A. SanchezPerez, E.M. RodrıguezPorcel, J.L. CasasLopez, J.M. FernandezSevilla, and Y. Chisti, J. Chem Eng., 2006, vol. 124, pp. 1–5.

    Article  Google Scholar 

  29. G. Karniadakis, A. Beskok, and N. Aluru, eds.: Microflows and Nanoflows: Fundamentals and Simulations, Springer, New York, NY, 2005.

  30. G.I. Eskin, Ultrason. Sonochem., 1995, Vol. 2 (2), pp.137-141.

    Article  Google Scholar 

  31. H. Xu, X. Jian, T.T. Meek, and Q. Han: in Ultrasonic Degassing of Molten Aluminum under Reduced Pressure, Light Metals 2005, H. Kvande, ed., The Minerals, Metals & Materials Society (TMS), Atlanta, 2005, pp. 915–19.

  32. V. Rundquist and K. Manchiraju: in Ultrasonic Degassing and Processing of Aluminum’, Light Metals 2013, B. Sadler, ed., The Minerals, Metals & Materials Society (TMS), Atlanta, 2013, pp. 949–55.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makhlouf M. Makhlouf.

Additional information

Manuscript submitted May 21, 2014.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Borgonovo, C., Makhlouf, M.M. Synthesis of Aluminum–Aluminum Nitride Nanocomposites by a Gas–Liquid Reaction II. Microstructure and Mechanical Properties. Metall Mater Trans A 47, 1818–1827 (2016). https://doi.org/10.1007/s11661-016-3328-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-016-3328-7

Keywords

  • Matrix Alloy
  • Aluminum Nitride
  • Nanocomposite Material
  • Average Cluster Size
  • Impeller Rotation Speed