Metallurgical and Materials Transactions A

, Volume 47, Issue 3, pp 1040–1051 | Cite as

Kinetics of Ferrite Recrystallization and Austenite Formation During Intercritical Annealing of the Cold-Rolled Ferrite/Martensite Duplex Structures

  • Y. Mazaheri
  • A. Kermanpur
  • A. Najafizadeh
  • A. Ghatei Kalashami


Ultrafine-grained, dual-phase (UFG DP) steels were produced by a new route using an uncommon cold-rolling and subsequent intercritical annealing of ferrite/martensite duplex starting microstructures. The effects of processing parameters such as rolling reduction, intercritical annealing temperature, and time on the microstructural evaluations have been studied. UFG DP steels with an average grain size of about 1 to 2 μm were achieved by short intercritical annealing of the 80 pct cold-rolled duplex microstructures. The kinetics of ferrite recrystallization and austenite formation were studied based on the Johnson–Mehl–Avrami–Kolmogorov (JMAK) model. The proposed model for describing the isothermal austenite formation kinetics was applied successfully to the nonisothermal conditions. It was found that complete recrystallization of ferrite before the austenite formation led to the formation of a large extent randomly distributed austenite in the ferrite matrix and a chain-networked structure.


Ferrite Austenite Martensite Intercritical Annealing Rolling Reduction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    P.C. Chakraborti and M.K. Mitra: Mater. Sci. Eng. A, 2007, vol. 466, pp. 123–33.CrossRefGoogle Scholar
  2. 2.
    K.S. Choi, W.N. Liu, X. Sun, and M.A. Khaleel: Metall. Mater. Trans. A, 2009, vol. 40A, pp. 796–809.CrossRefGoogle Scholar
  3. 3.
    M. Calcagnotto, Y. Adachi, D. Ponge, and D. Raabe: Acta Mater., 2011, vol. 59, pp. 658–70.CrossRefGoogle Scholar
  4. 4.
    M. Papa Rao, V. Subramanya Sarma, and S. Sankaran: Mater. Sci. Eng. A, 2013, vol. 568, pp. 171–75.CrossRefGoogle Scholar
  5. 5.
    M. Papa Rao, V. Subramanya Sarma, and S. Sankaran: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 5313–17.CrossRefGoogle Scholar
  6. 6.
    Y.L. Kang: Theory and Technology of Processing and Forming for Advanced Automobile Steel Sheets, Metallurgical Industry Press, Beijing, China, 2009.Google Scholar
  7. 7.
    P. Jacques, X. Cornet, P. Harlet, J. Ladriere, and F. Delannay: Metall. Mater. Trans. A, 1998, vol. 29A, pp. 2383–93.CrossRefGoogle Scholar
  8. 8.
    G.R. Speich and R.L. Miller: in Structure and Properties of Dual-Phase Steels, R.A. Kot and J.W. Morris, eds., AIME, New York, 1979, pp. 13–22.Google Scholar
  9. 9.
    J.O. Arnold and A. McWilliams: J. Iron Steel Inst., 1905, No. 2, p. 352.Google Scholar
  10. 10.
    G.A. Roberts and R.F. Mehl: Trans. ASM, 1943, vol. 31, pp. 613–50.Google Scholar
  11. 11.
    G.R. Speich, V.A. Demarest, and R.L. Miller: Metall. Trans. A, 1981, vol. 12, pp. 1419–28.CrossRefGoogle Scholar
  12. 12.
    S.K. Nath, S. Ray, V.N.S. Mathur, and M.L. Kapoor: ISIJ Int., 1994, vol. 34, pp. 191–97.CrossRefGoogle Scholar
  13. 13.
    J. Mahieu, J. Maki, B.C. De Cooman, and S. Claessens: Metall. Mater. Trans. A, 2002, vol. 33A, pp. 2573–80.CrossRefGoogle Scholar
  14. 14.
    T. Waterschoot, K. Verbeken, and B.C. De Cooman: ISIJ Int., 2006, vol. 46, pp. 138–46.CrossRefGoogle Scholar
  15. 15.
    M. Asadi Asadabad, M. Goodarzi, and Sh. Kheirandish: ISIJ Int., 2008, vol. 48, pp. 1251–55.CrossRefGoogle Scholar
  16. 16.
    G.I. Garcia and A.J. Deardo: Metall. Trans. A, 1981, vol. 12, pp. 521–30.CrossRefGoogle Scholar
  17. 17.
    J. Huang, W.J. Poole, and M. Militzer: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 3363–75.CrossRefGoogle Scholar
  18. 18.
    D.Z. Yang, E.L. Brown, D.K. Matlock, and G. Krauss: Metall. Trans. A, 1985, vol. 16, pp. 1385–92.CrossRefGoogle Scholar
  19. 19.
    Y. Okitsu, N. Takata, and N. Tsuji: Scripta Mater., 2009, vol. 60, pp. 76–79.CrossRefGoogle Scholar
  20. 20.
    A. Karmakar, A. Karani, S. Patra, and D. Chakrabarti: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 2041–52.CrossRefGoogle Scholar
  21. 21.
    D. Quidort and Y.J.M. Brechet: ISIJ Int., 2002, vol. 42, pp. 1010–17.CrossRefGoogle Scholar
  22. 22.
    H. Azizi-Alizamini, M. Militzer, and W.J. Poole: ISIJ Int., 2011, vol. 51, pp. 958–64.CrossRefGoogle Scholar
  23. 23.
    J. Qu, W. Dabboussi, F. Hassani, J. Nemes, and S. Yue: ISIJ Int., 2005, vol. 45, pp. 1741–46.CrossRefGoogle Scholar
  24. 24.
    M. Calcagnotto, D. Ponge, and D. Raabe: ISIJ Int., 2012, vol. 52, pp. 874–83.CrossRefGoogle Scholar
  25. 25.
    P. Movahed, S. Kolahgar, S.P.H. Marashi, M. Pouranvari, and N. Parvin: Mater. Sci. Eng. A, 2009, vol. 518, pp. 1–6.CrossRefGoogle Scholar
  26. 26.
    S. Sodjit and V. Uthaisangsuk: Mater. Des., 2012, vol. 41, pp. 370–79.CrossRefGoogle Scholar
  27. 27.
    S. Sun and M. Pugh: Mater. Sci. Eng. A, 2002, vol. 335, pp. 298–308.CrossRefGoogle Scholar
  28. 28.
    A. Bag and K.K. Ray: Metall. Mater. Trans. A, 2001, vol. 32A, pp. 2400–403.CrossRefGoogle Scholar
  29. 29.
    S.C. Hong and K.S. Lee: Mater. Sci. Eng. A, 2002, vol. 323, pp. 148–59.CrossRefGoogle Scholar
  30. 30.
    J. Burke: Kinetics of Phase Transformations in Metals, Pergamon, London, 1965, p. 145.Google Scholar
  31. 31.
    E.S. Machlin: An Introduction to Aspects of Thermodynamics and Kinetics Relevant to Materials Science, Elsevier, Amsterdam, 2007, p. 284.Google Scholar
  32. 32.
    J. Kohout: J. Mater. Sci., 2008, vol. 43, pp. 1334–39.CrossRefGoogle Scholar
  33. 33.
    Z. Guo, W. Sha, and D. Li: Mater. Sci. Eng. A, 2004, vol. 373, pp. 10–20.CrossRefGoogle Scholar
  34. 34.
    J. Lis and A. Lis: J. Achiev. Mater. Manufact. Eng., 2008, vol. 26, pp. 195–98.Google Scholar
  35. 35.
    H. Sueyoshi and K. Suenaga: J. Jpn. Inst. Met., 1987, vol. 51, pp. 518–24.Google Scholar
  36. 36.
    C. Wert: Phys. Rev., 1950, vol. 79, pp. 601–605.CrossRefGoogle Scholar
  37. 37.
    J.S. Kirkaldy and D. Venugopalan: in Phase Transformations in Ferrous Alloys, A.R. Marker and J.I. Goldstein, eds., TMS-AIME, Warrendale, PA, 1984, pp. 125–48.Google Scholar
  38. 38.
    D.A. Porter and K.E. Easterling: Phase Transformation in Metals and Alloys, Chapman & Hall, London, 1992, p. 78.CrossRefGoogle Scholar
  39. 39.
    J. Huang, R.P. Hammond, K. Conlon, and W.J. Poole: in Proceedings of International Conference on TRIP-Aided High Strength Ferrous Alloys, B.C. De Cooman, ed., Wissenschaftsverlag Mainz GmbH, Aachen, 2002, pp. 187–91.Google Scholar
  40. 40.
    N. Nakada, Y. Arakawa, K.S. Park, T. Tsuchiyama, and S. Takaki: Mater. Sci. Eng. A, 2012, vol. 553, pp. 128–33.CrossRefGoogle Scholar
  41. 41.
    N. Peranio, Y.J. Li, F. Roters, and D. Raabe: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4161–68.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2016

Authors and Affiliations

  • Y. Mazaheri
    • 1
    • 2
  • A. Kermanpur
    • 1
  • A. Najafizadeh
    • 1
  • A. Ghatei Kalashami
    • 1
  1. 1.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran
  2. 2.Department of Materials EngineeringBu-Ali Sina UniversityHamedanIran

Personalised recommendations