Abstract
Nanocrystalline materials are defined by their fine grain size, but details of the grain boundary character distribution should also be important. Grain boundary character distributions are reported for ball-milled, sputter-deposited, and electrodeposited Ni and Ni-based alloys, all with average grain sizes of ~20 nm, to study the influence of processing route. The two deposited materials had nearly identical grain boundary character distributions, both marked by a Σ3 length percentage of 23 to 25 pct. In contrast, the ball-milled material had only 3 pct Σ3-type grain boundaries and a large fraction of low-angle boundaries (16 pct), with the remainder being predominantly random high angle (73 pct). These grain boundary character measurements are connected to the physical events that control their respective processing routes. Consequences for material properties are also discussed with a focus on nanocrystalline corrosion. As a whole, the results presented here show that grain boundary character distribution, which has often been overlooked in nanocrystalline metals, can vary significantly and influence material properties in profound ways.
Similar content being viewed by others
References
1. M. A. Meyers, A. Mishra and D. J. Benson, Prog Mater Sci 2006, vol. 51, pp. 427-556.
2. L. Mishnaevsky, et al., Mater. Sci. Eng. R. 2014, vol. 81, pp. 1-19.
R. A. Prado, J. Benfer, D. Facchini, N. Mahalanobis, and F. Gonzalez, Prod. Finish, 2012.
4. Z. C. Cordero, et al., Metall. Mater. Trans. A. 2014, vol. 45A, pp. 3609-3618.
5. P. W. Bridgman, J Appl Phys 1943, vol. 14, pp. 273-283.
6. R. Z. Valiev, R. K. Islamgaliev and I. V. Alexandrov, Prog Mater Sci 2000, vol. 45, pp. 103-189.
7. A. P. Zhilyaev and T. G. Langdon, Prog Mater Sci 2008, vol. 53, pp. 893-979.
8. Y. B. Zhang, O. V. Mishin, N. Kamikawa, A. Godfrey, W. Liu and Q. Liu, Mat Sci Eng A 2013, vol. 576, pp. 160-166.
9. S. C. Tjong and H. Chen, Mater. Sci. Eng. R. 2004, vol. 45, pp. 1-88.
10. U. Erb, A. M. El-Sherik, G. Palumbo and K. T. Aust, Nanostruct Mater 1993, vol. 2, pp. 383-390.
11. A. Robertson, U. Erb and G. Palumbo, Nanostruct Mater 1999, vol. 12, pp. 1035-1040.
12. H. Gleiter, Prog Mater Sci 1989, vol. 33, pp. 223-315.
13. R. J. Asaro, P. Krysl and B. Kad, Phil Mag Lett 2003, vol. 83, pp. 733-743.
14. V. Yamakov, D. Wolf, S. R. Phillpot, A. K. Mukherjee and H. Gleiter, Phil Mag Lett 2003, vol. 83, pp. 385-393.
15. J. Schiotz and K. W. Jacobsen, Science 2003, vol. 301, pp. 1357-1359.
16. T. J. Rupert and C. A. Schuh, Acta Materialia 2010, vol. 58, pp. 4137-4148.
17. H. A. Padilla and B. L. Boyce, Exp Mech 2010, vol. 50, pp. 5-23.
18. G. Herzer, IEEE Trans. Magn. 1990, vol. 26, pp. 1397-1402.
19. G. Palumbo, E. M. Lehockey and P. Lin, JOM 1998, vol. 50, pp. 40-43.
20. A. J. Schwartz, W. E. King and M. Kumar, Scripta Materialia 2006, vol. 54, pp. 963-968.
21. R. Z. Valiev, A. V. Sergueeva and A. K. Mukherjee, Scripta Materialia 2003, vol. 49, pp. 669-674.
22. M. Dao, L. Lu, Y. F. Shen and S. Suresh, Acta Materialia 2006, vol. 54, pp. 5421-5432.
23. L. Lu, Y. F. Shen, X. H. Chen, L. H. Qian and K. Lu, Science 2004, vol. 304, pp. 422-426.
24. K. Barmak, et al., J. Vac. Sci. Technol. A 2014, vol. 32, p. 7.
25. H. J. Fecht, E. Hellstern, Z. Fu and W. L. Johnson, Metall Trans A 1990, vol. 21, pp. 2333-2337.
26. B. Bay, N. Hansen, D. A. Hughes and D. Kuhlmann-Wilsdorf, Acta Metall. Mater. 1992, vol. 40, pp. 205-219.
27. N. Hansen and D. J. Jensen, Philos T R Soc A 1999, vol. 357, pp. 1447-1469.
28. D. A. Hughes and N. Hansen, Acta Materialia 1997, vol. 45, pp. 3871-3886.
29. S. Qu, et al., Acta Materialia 2009, vol. 57, pp. 1586-1601.
30. H. J. Fecht, Nanostruct Mater 1995, vol. 6, pp. 33-42.
31. J. Eckert, J. C. Holzer, C. E. Krill and W. L. Johnson, J Mater Res 1992, vol. 7, pp. 1751-1761.
32. D. B. Witkin and E. J. Lavernia, Prog Mater Sci 2006, vol. 51, pp. 1-60.
33. E. Hellstern, H. J. Fecht, C. Garland and W. L. Johnson, Mat. Res. Soc. Symp. Proc. 1989, vol. 132, pp. 137-142.
S. Ruan and C. A. Schuh, J Appl Phys 2010, vol. 107, 073512.
35. J. K. Mackenzie, Biometrika 1958, vol. 45, pp. 229-240.
36. J. K. Mason and C. A. Schuh, Acta Materialia 2009, vol. 57, pp. 4186-4197.
37. A. J. Detor and C. A. Schuh, Acta Materialia 2007, vol. 55, pp. 371-379.
38. I. Roy, H. W. Yang, L. Dinh, I. Lund, J. C. Earthman and F. A. Mohamed, Scripta Materialia 2008, vol. 59, pp. 305-308.
39. O. V. Mishin, D. J. Jensen and N. Hansen, Mat Sci Eng A 2003, vol. 342, pp. 320-28.
40. D. Viladot, et al., J Microsc 2013, vol. 252, pp. 23-34.
41. R. R. Keller and R. H. Geiss, J Microsc 2012, vol. 245, pp. 245-251.
42. P. W. Trimby, Ultramicroscopy 2012, vol. 120, pp. 16-24.
43. W. D. Nix and H. J. Gao, J Mech Phys Solids 1998, vol. 46, pp. 411-425.
44. D. G. Brandon, Acta Metallurgica 1966, vol. 14, pp. 1479-&.
H. Grimmer, W. Bollmann, D. H. Warrington (1974) Acta Crystallogr A vol. A 30, pp. 197-207.
46. C. A. Schuh, M. Kumar and W. E. King, J Mater Sci 2005, vol. 40, pp. 847-852.
47. Y. Xun and F. A. Mohamed, Mater. Sci Eng. A. 2011, vol. 528, pp. 5446-5452.
48. A. P. Zhilyaev, B. K. Kim, G. V. Nurislamova, M. D. Baro, J. A. Szpunar and T. G. Langdon, Scripta Materialia 2002, vol. 46, pp. 575-580.
49. K. S. Raju, M. G. Krishna, K. A. Padmanabhan, K. Muraleedharan, N. P. Gurao and G. Wilde, Mat Sci Eng A 2008, vol. 491, pp. 1-7.
50. D. A. Hughes and N. Hansen, Phys. Rev. Lett. 2001, vol. 87, p. 4.
M. Grewer, C. Braun, J. Lohmiller, P. A. Gruber, V. Honkimäki, and R. Birringer, ArXiv 2014.
52. Y. W. Xun, E. J. Lavernia and F. A. Mohamed, Metall. Mater. Trans. A. 2004, vol. 35A, pp. 573-581.
53. C. Suryanarayana, Prog Mater Sci 2001, vol. 46, pp. 1-184.
54. T. J. Rupert, J. C. Trenkle and C. A. Schuh, Acta Materialia 2011, vol. 59, pp. 1619-1631.
55. E. O. Hall, P Phys Soc B 1951, vol. 64, p. 747.
56. N. J. Petch, J Iron Steel I 1953, vol. 174, pp. 25-28.
57. J. A. Knapp and D. M. Follstaedt, J Mater Res 2004, vol. 19, pp. 218-227.
58. G. D. Hughes, S. D. Smith, C. S. Pande, H. R. Johnson and R. W. Armstrong, Scripta Metallurgica 1986, vol. 20, pp. 93-97.
59. A. M. El-Sherik, U. Erb, G. Palumbo and K. T. Aust, Scripta Metallurgica et Materialia 1992, vol. 27, pp. 1185-1188.
60. D. J. Abson and J. J. Jonas, Metal Science 1970, vol. 4, pp. 24-28.
61. S. Kobayashi, T. Yoshimura, S. Tsurekawa, T. Watanabe and J. Z. Cui, Mater. Trans. 2003, vol. 44, pp. 1469-1479.
62. A. Hasnaoui, H. Van Swygenhoven and P. M. Derlet, Science 2003, vol. 300, pp. 1550-1552.
63. X. W. Zhou and H. N. G. Wadley, Acta Materialia 1999, vol. 47, pp. 1063-1078.
64. X. Zhang, O. Anderoglu, R. G. Hoagland and A. Misra, JOM 2008, vol. 60, pp. 75-78.
65. D. J. Siegel, Appl Phys Lett 2005, vol. 87, p. 121901.
T. Lagrange, B. W. Reed, M. Wall, J. Mason, T. Barbee and M. Kumar, Appl Phys Lett 2013, 102: 011905
67. Z. Horita, D. J. Smith, M. Nemoto, R. Z. Valiev and T. G. Langdon, J Mater Res 1998, vol. 13, pp. 446-450.
68. K. Pantleon and M. A. J. Somers, Mater. Sci Eng. A. 2010, vol. 528, pp. 65-71.
69. S. Mahajan, C. S. Pande, M. A. Imam and B. B. Rath, Acta Materialia 1997, vol. 45, pp. 2633-2638.
70. H. Gleiter, Acta Metallurgica 1969, vol. 17, pp. 1421-1428.
X. Liu, N.T. Nuhfer, A.P. Warren, K.R. Coffey, G.S. Rohrer, and K. Barmak, J Mater Res 2015, pp. 1–10.
72. C. A. Schuh, R. W. Minich and M. Kumar, Philos Mag 2003, vol. 83, pp. 711-726.
73. S. H. Kim, K. T. Aust, F. Gonzalez and G. Palumbo, Plat. Surf. Finish. 2004, vol. 91, pp. 68-70.
74. G. Palumbo and K. T. Aust, Acta Metall. Mater. 1990, vol. 38, pp. 2343-2352.
75. Y. Zhao, I. C. Cheng, M. E. Kassner and A. M. Hodge, Acta Materialia 2014, vol. 67, pp. 181-188.
76. H. Zhao, L. Liu, J. Zhu, Y. Tang and W. Hu, Mater. Lett. 2007, vol. 61, pp. 1605-1608.
77. J. Vijayakumar and S. Mohan, Surf Eng 2011, vol. 27, pp. 32-36.
78. L. Y. Qin, J. S. Lian and Q. Jiang, Trans. Nonferrous Met. Soc. China 2010, vol. 20, pp. 82-89.
79. R. Mishra and R. Balasubramaniam, Corros Sci 2004, vol. 46, pp. 3019-3029.
80. C. Wen, G. Wen, Y. Qian and Q. Xinxin, Appl Surf Sci 2013, vol. 276, pp. 604-8.
81. M. Janecek, B. Hadzima, R. J. Hellmig and Y. Estrin, Kov. Mater.-Met. Mater. 2005, vol. 43, pp. 258-271.
B. Hadzima, M. Janecek, R.J. Hellmig, Y. Kutnyakova and Y. Estrin (2006) In: Z. Horita (ed) Nanomaterials by Severe Plastic Deformation. Trans Tech Publications Ltd: Zurich-Uetikon, pp 883-888.
M. Saremi and M. Abouie (2011) In: M. S. J. Hashmi, S. Mridha and S. Naher (ed) Advances in Materials and Processing Technologies Ii, Pts 1 and 2. Trans Tech Publications Ltd: Stafa-Zurich, pp 1519-1525.
84. M. Saremi and M. Yeganeh, Micro Nano Lett. 2010, vol. 5, pp. 70-75.
85. X. X. Xu, et al., Mater. Lett. 2010, vol. 64, pp. 524-527.
86. G. Palumbo and U. Erb, MRS Bull. 1999, vol. 24, pp. 27-32.
87. A. Vinogradov, T. Mimaki, S. Hashimoto and R. Valiev, Scripta Materialia 1999, vol. 41, pp. 319-326.
88. C. A. Schuh, K. Anderson and C. Orme, Surf Sci 2003, vol. 544, pp. 183-192.
89. C. Kollia and N. Spyrellis, Surf. Coat. Technol. 1993, vol. 57, pp. 71-75.
90. A. Q. Lü, Y. Zhang, Y. Li, G. Liu, Q. H. Zang and C. M. Liu, Acta Metallurgica Sinica (English Letters) 2006, vol. 19, pp. 183-189.
Acknowledgments
We gratefully acknowledge support from the National Science Foundation through a CAREER Award No. DMR-1255305. This work was partly performed under the auspices of the U. S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. D.B.B. and M.K. were supported by the U.S. Department of Energy (DOE), Office of Basic Energy Sciences, Division of Materials Science and Engineering under FWP# SCW0939. D.B.B. also acknowledges the support of the Livermore Graduate Scholar Program at Lawrence Livermore National Laboratory during part of this work.
Author information
Authors and Affiliations
Corresponding author
Additional information
The submitted manuscript has been authored by a contractor of the U.S. Government under contract number DE-AC52-07NA27344. Accordingly the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or allow others to do so, for U.S. Government purposes.
Manuscript submitted May 26, 2015.
Rights and permissions
About this article
Cite this article
Bober, D.B., Khalajhedayati, A., Kumar, M. et al. Grain Boundary Character Distributions in Nanocrystalline Metals Produced by Different Processing Routes. Metall Mater Trans A 47, 1389–1403 (2016). https://doi.org/10.1007/s11661-015-3274-9
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11661-015-3274-9