Skip to main content
Log in

Analysis of Surface Roughening in AA6111 Automotive Sheet Under Pure Bending

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The finite element method is used to numerically simulate the topographic development in an aluminum sheet, AA6111, under pure bending. The measured electron backscatter diffraction data are directly incorporated into the finite element model, and the constitutive response at an integration point is described by the single crystal plasticity theory. The effects of strain-rate sensitivity, work hardening, and imposed initial surface roughness on surface roughening are studied. It is found that the grains in top surface layers of the sheet play a big role in controlling the outer surface roughness due to the strain gradient across sheet thickness in bending, while the grain size and texture of the surface layers have a direct impact on finishing surface qualities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. J. Datsko and C.T. Yang: Correlation of bendability of materials with their tensile properties”, 1960. Trans. ASME: J. Eng. Ind., 309-314.

    Article  Google Scholar 

  2. D.J. Lloyd, D. Evans, C. Pelow, P. Nolan and M. Jain, 2002, Bending in aluminium alloys AA6111 and AA5754 using the cantilever bend test, Mater. Sci. Technol., 18, 621-628.

    Article  Google Scholar 

  3. J. Sarkar, T. R. G Kutty, D. S. Wilkinson, J. D. Embury and D. J. Lloyd, 2004, Tensile properties and bendability of T4 treated AA6111 aluminum alloys, Mat. Sci. Eng. A369, 258-266.

    Article  Google Scholar 

  4. Y. Shi, H. Jin, P.D. Wu, D.J. Lloyd and D. Embury, 2014, Failure analysis of fusion clad alloy system AA3003/AA6xxx sheet under bending”, Mater. Sci. Eng., A, 610(2014)263–272.

    Article  Google Scholar 

  5. D.V. Wilson, W.T. Roberts and P.M.B. Rodrigues, 1981, “Effects of grain anisotropy on limit strains in biaxial stretching: Part II, sheets of cubic metals and alloys with well-developed preferred orientations”, Metall. Trans., 12A, 1603–1611.

    Article  Google Scholar 

  6. D.V. Wilson, A.R. Mirshams and W.T. Roberts, 1983, “An experimental study of the effect of sheet thickness and grain size on limit-strains in biaxial stretching” Int. J. Mech. Sci., 25, 859-870.

    Article  Google Scholar 

  7. R. Becker, 1998, “Effects of strain localization on surface roughening during sheet forming”, Acta metall., 46, 1385-1401.

    Google Scholar 

  8. A.J. Beaudoin, J.D. Bryant and D.A. Korzekwa, 1998, “Analysis of ridging in aluminum auto body sheet metal”, Metall. Mater. Trans., 29A, 2323-2332.

    Article  Google Scholar 

  9. M.R. Stoudt and J.B. Hubbard, 2005, “Analysis of deformation-induced surface morphologies in steel sheet”, Acta Mater., 53, 4293-4304.

    Article  Google Scholar 

  10. T. J. Turner and M. P. Miller, 2006, “Modeling the Influence of Material Structure on Deformation Induced Surface Roughening in AA7050 Thick”, J. Eng. Mater. Technol. 129, 367-379.

    Article  Google Scholar 

  11. M.R. Stoudt, L.E. Levine, A., Creuziger and J.B., Hubbard, 2011, “The fundamental relationships between grain orientation, deformation induced surface roughness and strain localization in an aluminum alloy” Mater. Sci. Eng., A530, 107-116.

    Article  Google Scholar 

  12. Q. Zhang, P.Z. Zhao, J.D. Liu, and Y.J.Feng: Light Met., 2015, M. Hyland, ed., pp. 333–37.

  13. P.D. Wu, D.J. Lloyd, A. Bosland, J. Jin and S.R. MacEwen, 2003,”Analysis of roping in AA6111 automotive sheet”, Acta Mater., 51, 1945-1957.

    Article  Google Scholar 

  14. P.D. Wu and D.J. Lloyd, 2004, “Analysis of surface roughening in AA6111 automotive sheet”, Acta Mater., 52, 1785–1798.

    Article  Google Scholar 

  15. P.D. Wu, D.J. Lloyd, M. Jain, K.W. Neals and Y. Huang, 2007, “Effects of spatial grain orientation distribution and initial surface topography on sheet metal necking”, Int. J. Plasticity, 23, 1084-1104.

    Article  Google Scholar 

  16. Y. Shi, P.D. Wu, D.J. Lloyd and J.D. Embury, 2015, “ Numerical Study of Surface Roughening in Blow-formed Aluminum Bottle with Crystal Plasticity”, Mater. Sci. Eng., A, 638, 97-105.

    Article  Google Scholar 

  17. R.J. Asaro and A. Needleman, 1985, “Texture development and strain hardening in rate dependent polycrystals”, Acta metall., 33, 923-953.

    Article  Google Scholar 

  18. P.D. Wu, K.W. Neale and E. Van der Giessen, 1996, “Simulation of the behavior of FCC polycrystals during reversed torsion”, Int. J. Plasticity, 12, 1199-1219.

    Article  Google Scholar 

  19. ABAQUS User Manual, 2013, Version 6.13.

Download references

Acknowledgment

This work is supported by the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. Shi.

Additional information

Manuscript submitted April 29, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, Y., Zhao, P.Z., Jin, H. et al. Analysis of Surface Roughening in AA6111 Automotive Sheet Under Pure Bending. Metall Mater Trans A 47, 949–960 (2016). https://doi.org/10.1007/s11661-015-3260-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3260-2

Keywords

Navigation