Skip to main content
Log in

An Analytical Framework for Predicting the Limit in Structural Refinement in Accumulative Roll Bonded Nickel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The limit in structural refinement of lamellar bands (LBs) generated during accumulative roll bonding (ARB) of commercially pure nickel was investigated by transmission electron microscopy and transmission Kikuchi diffraction. A typical LB consists of an internal cellular substructure of low angle boundaries (LABs) bounded by two high angle boundaries (HABs) that are aligned parallel to the rolling plane. At low true strains (ε < 2.4; 1 to 3 ARB cycles), the deformation substructure was distributed heterogeneously; nano-sized (~80 nm) equiaxed grains containing mainly HABs were generated in the vicinity of the roll bonding region of the individual nickel layers, whereas a typical dislocation substructure containing LABs was generated in their interior. At high strains (ε > 4.8; 6 to 10 ARB cycles), a homogenous distribution of well-defined, highly elongated LBs of average thickness 75 nm was generated throughout the entire thickness of the material. The thickness of these LBs decreased with increasing number of ARB cycles and reached a saturation thickness of ~75 nm after 6 to 8 cycles. A theoretical framework for the limit to LB refinement during ARB is presented based on the refinement rate due to the stored energy of deformation balanced by the growth rate caused by adiabatic heating. The analysis takes into account the unique features of LB structures and processing parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Groche, J. Yanagimoto N. Tsuji, A. Rosochowski and A. Yanagida (2008) CIRP Ann. Manuf. Technol., vol. 57, pp. 716–35.

    Article  Google Scholar 

  2. Y. Estrin and A. Vinogradov: Acta Mater., 2013, vol. 61, pp. 782–817.

    Article  Google Scholar 

  3. Z. P. Luo, H. W. Zhang, N. Hansen and K. Lu: Acta Mater., 2012, vol. 60, pp. 1322–33.

    Article  Google Scholar 

  4. X. Y. Qin, X. G. Zhu, S. Gao, L. F. Chi and J. S. Lee: Scripta Mater., 2002, vol. 46, pp. 611–16.

    Article  Google Scholar 

  5. R. Pippan, S. Scheriau, A. Taylor, M. Hafok, A. Hohenwarter and A. Bachmaier: Annu Rev Mater Res, 2010, vol. 40, pp. 319–43.

    Article  Google Scholar 

  6. F. Liu, Y. Zhang and J.T. Wang: Mater. Sci. Forum, 2011, vol. 667–669, pp. 319–24.

    Google Scholar 

  7. S.V. Zherebtsov, G.S. Dyakonov, A.A. Salem, V.I. Sokolenko, G.A. Salishchev and S.L. Semiatin: Acta Mater., 2013, vol. 61, pp. 1167–78.

    Article  Google Scholar 

  8. N. Kamikawa, T. Sakai, N. Tsuji: Acta Mater., 2007, vol. 55, pp. 5873–88.

    Article  Google Scholar 

  9. M.Z. Quadir, M. Ferry, O. Al-Buhamad, P.R. Munroe: Acta Mater., 2009, vol. 57, pp. 29–40.

    Article  Google Scholar 

  10. A.P. Zhilyaev, S. Swaminathan, A.I. Pshenichnyuk, T.G. Langdon and T.R. McNelley: J. Mater. Sci., 2013, vol. 48, pp. 4626–36.

    Article  Google Scholar 

  11. P.W. Trimby, Y. Cao, Z. Chen, S. Han, K.J. Hemker, J. Lian, X. Liao, P. Rottmann, S. Samudrala, J. Sun, J.T. Wang, J. Wheeler and J.M. Cairney: Acta Mater., 2014, vol. 62, pp. 69–80.

    Article  Google Scholar 

  12. F.J. Humphreys, M. Hatherly: Recrystallization and Related Annealing Phenomena, Elsevier Press, Oxford, 2004.

    Google Scholar 

  13. L. Li, K. Nagrai and F.X. Yin: Sci. Technol. Adv. Mater., 2008, vol. 9, pp. 1–11.

    Google Scholar 

  14. S.H. Lee, Y. Saito, N. Tsuji, H. Utsunomiya and T. Sakai: Scripta Mater., 2002, vol. 46, pp. 281–85.

    Article  Google Scholar 

  15. K.D. Lau, M.Z. Quadir and M. Ferry: Light Metals Technology, 2009, vol. 618–619, pp. 575–78.

    Google Scholar 

  16. S.H. Lee, Y. Sakai and H. Utsunomiya, Mater. Sci. Eng A, 2002, vol. 325, pp. 228–35.

    Article  Google Scholar 

  17. H.J. Frost and M.F. Ashby: Deformation-Mechanism Maps, Pergamon Press, Oxford, 1982.

    Google Scholar 

  18. D.K. Yang, P. Cizek, P.D. Hodgson and C.E. Wen: Acta Mater., 2010, vol. 58, pp. 4536–48.

    Article  Google Scholar 

  19. J. Hodowany, G. Ravichandran, A.J. Rosakis and P. Rosakis: Exp. Mech., 2000, vol. 40, pp. 113–23.

    Article  Google Scholar 

  20. A.R. Wazzan: J. Appl. Phys., 1965, vol. 36, pp. 3596–99.

    Article  Google Scholar 

  21. Y.R. Kolobov, G.P. Grabovetskaya, M.B. Ivanov, A.P. Zhilyaev and R.Z. Valiev: Scripta Mater., 2001, vol. 44, pp. 873–78.

    Article  Google Scholar 

  22. D.A. Hughes and N. Hansen: Acta Mater., 2000, vol. 48, pp. 2985–3004.

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the China Scholarship Council (CSC) for supporting this work. The authors also gratefully acknowledge the access to the University of New South Wales node of the Australian Microscopy and Microanalysis Research Facility (AMMRF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Ferry.

Additional information

Manuscript submitted July 1, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, J.Q., Quadir, M.Z. & Ferry, M. An Analytical Framework for Predicting the Limit in Structural Refinement in Accumulative Roll Bonded Nickel. Metall Mater Trans A 47, 471–478 (2016). https://doi.org/10.1007/s11661-015-3240-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3240-6

Keywords

Navigation