Skip to main content
Log in

Passivation Behavior of Ultrafine-Grained Pure Copper Fabricated by Accumulative Roll Bonding (ARB) Process

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In this study, passivation behavior of ultrafine-grained (UFG) pure copper fabricated by ARB process in 0.01 M borax solution has been investigated. Before any electrochemical measurements, evaluation of microstructure was obtained by transmission electron microscopy (TEM). TEM observations revealed that with increasing the number of ARB passes, the grain size of specimens decrease. Also, TEM images showed that UFGs with average size of below 100 nm appeared after 7 passes of ARB. To investigate the passivation behavior of the specimens, electrochemical impedance spectroscopy (EIS) and Mott-Schottky analysis was carried out. For this purpose, three potentials within the passive region were chosen for potentiostatic passive film growth. EIS results showed that both passive film and charge-transfer resistance increases with increasing the number of ARB passes. Moreover, Mott-Schottky analysis revealed that with increasing the number of ARB passes, the acceptor density of the passive films decreased. In conclusion, increasing the number of ARB passes offers better conditions for forming the passive films with higher protection behavior, due to the growth of a much thicker and less defective films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.H. Sanad, and A.R. Taman: Surf. Tech., 1984, vol. 23, pp. 159–66.

    Article  Google Scholar 

  2. Q. Zhong, L. Yu, Y. Xiao, Y. Wang, Q. Zhou, and Q. Zhong: Advanc. Mater. Res., 2013, vol. 785, pp. 928–32.

    Article  Google Scholar 

  3. M. Pourbaix: Atlas of Electrochemical Equilibria in Aqueous Solutions, 2nd ed., NACE, Houston, 1974, pp. 85–87.

    Google Scholar 

  4. R.M. Souto, S. Gonzalez, R.C. Salvarezza, and A.J. Arvia: Electrochim. Acta., 1994, vol. 39, pp. 2619–28.

    Article  Google Scholar 

  5. M. Raei, M.R. Toroghinejad, R. Jamaati, and J.A. Szpunar: Mater. Sci. Eng. A., 2010, vol. 527, pp. 7068–73.

    Article  Google Scholar 

  6. R. Jamaati, M.R. Toroghinejad, and H. Edris: Mater. Sci. Eng. A., 2013, vol. 578, pp. 191–96.

    Article  Google Scholar 

  7. S. Pasebani, and M.R. Toroghinejad: Mater. Sci. Eng. A., 2010, vol. 527, pp. 491–97.

    Article  Google Scholar 

  8. S. Pasebani, and M.R. Toroghinejad, M. Hosseini, J. Szpunar:, Mater. Sci. Eng. A., 2010, vol. 527, pp. 2050–56.

    Article  Google Scholar 

  9. W. Wei, K. X. Wei, and Q. B. Du: Mater. Sci. Eng. A., 2007, vol. 454, pp. 536–41.

    Article  Google Scholar 

  10. M. Kadkhodaee, M. Babaiee, H. DaneshManesh, M. Pakshir, and B. Hashemi: J. Alloys Comp., 2013, vol. 576, pp. 66–71.

    Article  Google Scholar 

  11. M.R. Rezaei, M.R. Toroghinejad, and F. Ashrafizadeh: J. Mater. Process. Tech., 2011, vol. 211, pp. 1184–90.

    Article  Google Scholar 

  12. E. Darmiani, I. Danaee, M.A. Golozar, and M.R. Toroghinejad: J. Alloys Comp., 2013, vol. 552, pp. 31–39.

    Article  Google Scholar 

  13. Y. Saito, H. Utsunomiya, N. Tsuji, and T. Sakai: Acta Mater., 1999, vol. 47, pp. 579–83.

    Article  Google Scholar 

  14. R. Jamaati, M.R. Toroghinejad, and A. Najafizadeh: Mater. Sci. Eng. A., 2010, vol. 527, pp. 3857–63.

    Article  Google Scholar 

  15. S.A. Hosseini, and H. DaneshManesh: Mater. Des., 2009, vol. 30, pp. 2911–18.

    Article  Google Scholar 

  16. A. Fattah-alhosseini, and O. Imantalab: J. Alloys Comp., 2015, vol. 632, pp. 48–52.

    Article  Google Scholar 

  17. A. Ehsani, M. Nasrollahzadeh, M.G. Mahjani, R. Moshrefi, and H. Mostaanzadeh: J. Ind. Eng. Chem., 2014, vol. 20, pp. 4363–70.

    Article  Google Scholar 

  18. J.J. Gray, B.S. El Dasher, and C.A. Orme: Sur. Sci., 2006, vol. 600, pp. 2488–94.

    Article  Google Scholar 

  19. J.J. Gray, and C.A. Orme: Electrochem. Acta., 2007, vol. 52, pp. 2370–75.

    Article  Google Scholar 

  20. H. Wu, Y. Wang, Q. Zhong, M. Sheng, H. Du, and Z. Li: J. Electroanal. Chem., 2011, vol. 663, pp. 59–66.

    Article  Google Scholar 

  21. M.F. Naeini, M.H. Shariat, and M. Eizadjou: J. Alloys Comp., 2011, vol. 509, pp. 4696–4700.

    Article  Google Scholar 

  22. Y. Ashworth, and D. Fairhurst: J. Electrochem. Soc., 1977, vol. 124, pp. 506–17.

    Article  Google Scholar 

  23. M. Pérez Sánchez, M. Barrera, S. González, R.M. Souto, R.C. Salvarezza, and A.J. Arvia: Electrochim. Acta., 1990, vol. 35, pp. 1337–43.

    Article  Google Scholar 

  24. M.M. Laz, R.M. Souto, S. González, R.C. Salvarezza, and A.J. Arvia: Electrochim. Acta., 1992, vol. 37, pp. 655–63.

    Article  Google Scholar 

  25. K. Nakaoka, J. Ueyama, and K. Ogura: J. Electrochem. Soc., 2004, vol. 151, pp. C661–65.

    Article  Google Scholar 

  26. K.W. Cheng, W.C. Lee, and M.S. Fan: Electrochim. Acta., 2013, vol. 87, pp. 53– 62.

    Article  Google Scholar 

  27. Y.K. Hsu, C.H. Yu, Y.C. Chen, and Y.G. Lin: J. Power Sources., 2013, vol. 242, pp. 541–47.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Fattah-alhosseini.

Additional information

Manuscript submitted March 28, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fattah-alhosseini, A., Imantalab, O. Passivation Behavior of Ultrafine-Grained Pure Copper Fabricated by Accumulative Roll Bonding (ARB) Process. Metall Mater Trans A 47, 572–580 (2016). https://doi.org/10.1007/s11661-015-3239-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3239-z

Keywords

Navigation