Abstract
The effect of initial grain size on the microstructural evolution and tensile properties of an extruded Mg-9Al-0.6Zn alloy was investigated using homogenized billets with grain sizes of 411 and 87 μm. It is found that although dynamically recrystallized (DRXed) grains remain the same size regardless of the initial grain size, a finer-grained billet results in a significant reduction of the size and area fraction of un-DRXed grains through an increase in grain boundaries capable of acting as nucleation sites for DRX during hot extrusion. This increase in the fraction of DRXed grains, combined with more precipitates, improves the tensile yield strength of the extruded alloy. The elongation is also significantly improved, as the reduction in unDRXed grains suppresses the formation of twins that cause micro-cracks. This increased ductility subsequently results in an increase in ultimate tensile strength through continuous strain hardening.
References
S.H. Park, B.S. You, R.K. Mishra, and A.K. Sachdev: Mater. Sci. Eng. A, 2014, vol. 598, pp. 396–406.
M. Hirano, M. Yamasaki, K. Hagihara, K. Higashida, and Y. Kawamura: Mater. Trans. 2010, vol. 51, pp. 640–47.
M. Shahzad and L. Wagner: Mater. Sci. Eng. A, 2009, vol. 506, pp. 141–47.
S.H. Park, H.S. Kim, J.H. Bae, C.D. Yim, and B.S. You: Scr. Mater., 2013, vol. 69, pp. 250–53.
S.H. Park, J.H. Lee, H. Yu, J.H. Yoon, and B.S. You, Mater. Sci. Eng. A, 2014, vol. 612, pp. 197–201.
H. Borkar, M. Hoseini, and M. Pekguleryuz: Mater. Sci. Eng. A, 2012, vol. 549, pp. 168–75.
J.G. Jung, S.H. Park, H. Yu, Y.M. Kim, Y.K. Lee, and B.S. You: Scr. Mater., 2014, vol. 93, pp. 8–11.
M.R. Barnett, Z. Keshavarz, A.G. Beer, and D. Atwell: Acta Mater., 2004, vol. 52, pp. 5093–5103.
D. Wu, R.S. Chen, W.N. Tang, and E.H. Han: Mater. Des., 2012, vol. 41, pp. 306–13.
D.L. Atwell, M.R. Barnett, and W.B. Hutchinson: Mater. Sci. Eng. A, 2012, vol. 549, pp. 1–6.
A. Vinogradov, D. Orlov, A. Danyuk, and Y. Estrin: Acta Mater., 2013, vol. 61, pp. 2044–56.
A. Luo: Can. Metall. Quart., 1996, vol. 35, pp. 375–83.
H. Yu, Y.M. Kim, B.S. You, H.S. Yu, and S.H. Park: Mater. Sci. Eng. A, 2013, vol. 559, pp. 798–807.
Y. Wang, M. Xia, Z. Fan, X. Zhou, and G.E. Thompson: Intermetallics, 2010, vol. 18, pp. 1683–89.
K.D. Molodov, T. Al-Samman, and D.A. Molodov: IOP Conf. Ser.: Mater. Sci. Eng., 2015, vol. 82, pp. 012014.
M.R. Barnett, A.G. Beer, D. Atwell, and A. Oudin: Scr. Mater., 2004, vol. 51, pp. 19–24.
S.H. Park and B.S. You: J Alloys Compd., 2015, vol. 637, pp. 332–38.
J.G. Jung, J.S. Park, J. Kim, and Y.K. Lee: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5529–35.
M.A. Easton, A. Schiffl, J.Y. Yao, and H. Kaufmann: Scr. Mater., 2006, vol. 55, pp. 379–82.
B. Inem and G. Pollard: J. Mater. Sci., 1993, vol. 28, pp. 4427–34.
B. Inem: J. Mater. Sci., 1995, vol. 30, pp. 5763–69.
T.J. Chen, X.D. Jing, Y. Ma, Y.D. Li, and Y. Hao: J. Alloys Compd., 2010, vol. 496, pp. 218–25.
Y. Huang, K.U. Kainer, and N. Hort: Scr. Mater., 2011, vol. 64, pp. 793–96.
M.R. Barnett: Mater. Sci. Eng. A, 2007, vol. 464, pp. 8–16.
A. Galiyev, R. Kaibyshev, and G. Gottstein: Acta Mater., 2001, vol. 49, pp. 1199–1207.
H. Yu, S.H. Park, and B.S. You: J. Mater. Process. Technol, 2015, vol. 224, pp. 181–88.
C. Bettles and M. Barnett: Advances in Wrought Magnesium Alloys: Fundamentals of Processing, Properties and Applications, Woodhead Publishing, Cambridge, UK, 2012, pp. 187–202.
This research was supported by a Fundamental Research Program of the Korea Institute of Materials Science (KIMS).
Author information
Authors and Affiliations
Corresponding author
Additional information
Manuscript submitted July 1, 2015.
Rights and permissions
About this article
Cite this article
Park, S.H., Bae, J.H., Kim, SH. et al. Effect of Initial Grain Size on Microstructure and Mechanical Properties of Extruded Mg-9Al-0.6Zn Alloy. Metall Mater Trans A 46, 5482–5488 (2015). https://doi.org/10.1007/s11661-015-3164-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11661-015-3164-1