Skip to main content
Log in

Effect of Initial Grain Size on Microstructure and Mechanical Properties of Extruded Mg-9Al-0.6Zn Alloy

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of initial grain size on the microstructural evolution and tensile properties of an extruded Mg-9Al-0.6Zn alloy was investigated using homogenized billets with grain sizes of 411 and 87 μm. It is found that although dynamically recrystallized (DRXed) grains remain the same size regardless of the initial grain size, a finer-grained billet results in a significant reduction of the size and area fraction of un-DRXed grains through an increase in grain boundaries capable of acting as nucleation sites for DRX during hot extrusion. This increase in the fraction of DRXed grains, combined with more precipitates, improves the tensile yield strength of the extruded alloy. The elongation is also significantly improved, as the reduction in unDRXed grains suppresses the formation of twins that cause micro-cracks. This increased ductility subsequently results in an increase in ultimate tensile strength through continuous strain hardening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. S.H. Park, B.S. You, R.K. Mishra, and A.K. Sachdev: Mater. Sci. Eng. A, 2014, vol. 598, pp. 396–406.

    Article  Google Scholar 

  2. M. Hirano, M. Yamasaki, K. Hagihara, K. Higashida, and Y. Kawamura: Mater. Trans. 2010, vol. 51, pp. 640–47.

    Article  Google Scholar 

  3. M. Shahzad and L. Wagner: Mater. Sci. Eng. A, 2009, vol. 506, pp. 141–47.

    Article  Google Scholar 

  4. S.H. Park, H.S. Kim, J.H. Bae, C.D. Yim, and B.S. You: Scr. Mater., 2013, vol. 69, pp. 250–53.

    Article  Google Scholar 

  5. S.H. Park, J.H. Lee, H. Yu, J.H. Yoon, and B.S. You, Mater. Sci. Eng. A, 2014, vol. 612, pp. 197–201.

    Article  Google Scholar 

  6. H. Borkar, M. Hoseini, and M. Pekguleryuz: Mater. Sci. Eng. A, 2012, vol. 549, pp. 168–75.

    Article  Google Scholar 

  7. J.G. Jung, S.H. Park, H. Yu, Y.M. Kim, Y.K. Lee, and B.S. You: Scr. Mater., 2014, vol. 93, pp. 8–11.

    Article  Google Scholar 

  8. M.R. Barnett, Z. Keshavarz, A.G. Beer, and D. Atwell: Acta Mater., 2004, vol. 52, pp. 5093–5103.

    Article  Google Scholar 

  9. D. Wu, R.S. Chen, W.N. Tang, and E.H. Han: Mater. Des., 2012, vol. 41, pp. 306–13.

    Article  Google Scholar 

  10. D.L. Atwell, M.R. Barnett, and W.B. Hutchinson: Mater. Sci. Eng. A, 2012, vol. 549, pp. 1–6.

    Article  Google Scholar 

  11. A. Vinogradov, D. Orlov, A. Danyuk, and Y. Estrin: Acta Mater., 2013, vol. 61, pp. 2044–56.

    Article  Google Scholar 

  12. A. Luo: Can. Metall. Quart., 1996, vol. 35, pp. 375–83.

    Google Scholar 

  13. H. Yu, Y.M. Kim, B.S. You, H.S. Yu, and S.H. Park: Mater. Sci. Eng. A, 2013, vol. 559, pp. 798–807.

    Article  Google Scholar 

  14. Y. Wang, M. Xia, Z. Fan, X. Zhou, and G.E. Thompson: Intermetallics, 2010, vol. 18, pp. 1683–89.

    Article  Google Scholar 

  15. K.D. Molodov, T. Al-Samman, and D.A. Molodov: IOP Conf. Ser.: Mater. Sci. Eng., 2015, vol. 82, pp. 012014.

    Article  Google Scholar 

  16. M.R. Barnett, A.G. Beer, D. Atwell, and A. Oudin: Scr. Mater., 2004, vol. 51, pp. 19–24.

    Article  Google Scholar 

  17. S.H. Park and B.S. You: J Alloys Compd., 2015, vol. 637, pp. 332–38.

    Article  Google Scholar 

  18. J.G. Jung, J.S. Park, J. Kim, and Y.K. Lee: Mater. Sci. Eng. A, 2011, vol. 528, pp. 5529–35.

    Article  Google Scholar 

  19. M.A. Easton, A. Schiffl, J.Y. Yao, and H. Kaufmann: Scr. Mater., 2006, vol. 55, pp. 379–82.

    Article  Google Scholar 

  20. B. Inem and G. Pollard: J. Mater. Sci., 1993, vol. 28, pp. 4427–34.

    Article  Google Scholar 

  21. B. Inem: J. Mater. Sci., 1995, vol. 30, pp. 5763–69.

    Article  Google Scholar 

  22. T.J. Chen, X.D. Jing, Y. Ma, Y.D. Li, and Y. Hao: J. Alloys Compd., 2010, vol. 496, pp. 218–25.

    Article  Google Scholar 

  23. Y. Huang, K.U. Kainer, and N. Hort: Scr. Mater., 2011, vol. 64, pp. 793–96.

    Article  Google Scholar 

  24. M.R. Barnett: Mater. Sci. Eng. A, 2007, vol. 464, pp. 8–16.

    Article  Google Scholar 

  25. A. Galiyev, R. Kaibyshev, and G. Gottstein: Acta Mater., 2001, vol. 49, pp. 1199–1207.

    Article  Google Scholar 

  26. H. Yu, S.H. Park, and B.S. You: J. Mater. Process. Technol, 2015, vol. 224, pp. 181–88.

    Article  Google Scholar 

  27. C. Bettles and M. Barnett: Advances in Wrought Magnesium Alloys: Fundamentals of Processing, Properties and Applications, Woodhead Publishing, Cambridge, UK, 2012, pp. 187–202.

    Book  Google Scholar 

Download references

This research was supported by a Fundamental Research Program of the Korea Institute of Materials Science (KIMS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung Hyuk Park.

Additional information

Manuscript submitted July 1, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, S.H., Bae, J.H., Kim, SH. et al. Effect of Initial Grain Size on Microstructure and Mechanical Properties of Extruded Mg-9Al-0.6Zn Alloy. Metall Mater Trans A 46, 5482–5488 (2015). https://doi.org/10.1007/s11661-015-3164-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3164-1

Keywords

Navigation