Skip to main content
Log in

A Processing Map for Hot Deformation of an Ultrafine-Grained Aluminum-Magnesium-Silicon Alloy Prepared by Mechanical Milling and Hot Extrusion

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Uniaxial compression test at different temperatures [573 K to 723 K (300 °C to 450 °C)] and strain rates (0.01 to 1 s−1) was employed to study the hot deformation behavior of an ultrafine-grained (UFG) Al6063 alloy prepared by the powder metallurgy route. The UFG alloy with an average grain size of ~0.3 µm was prepared by mechanical milling of a gas-atomized aluminum alloy powder for 20 hours followed by hot powder extrusion at 723 K (450 °C). To elaborate the effect of grain size, the aluminum alloy powder was extruded without mechanical milling to attain a coarse-grained (CG) structure with an average grain size of about 2.2 µm. By employing the dynamic materials model, processing maps for the hot deformation of the UFG and CG Al alloy were constructed. For investigation of microstructural evolutions and deformation instability occurring upon hot working, optical microscopy, scanning electron microscopy coupled with electron backscattered diffraction and transmission electron microscopy were utilized. It is shown that the grain refinement increases the deformation flow stress while reducing the strain hardening and power dissipation efficiency during the deformation process at the elevated temperatures. Restoration mechanisms, including dynamic recovery and recrystallization are demonstrated to control microstructural evolutions and thus the deformation behavior. Coarsening of the grain structure in the UFG alloy is illustrated, particularly when the deformation is performed at high temperatures and low strain rates. The manifestations of instability are observed in the form of cracking and void formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. [1] S.B. Bhimavarapu, A.K. Maheshwari, D. Bhargava and S.P. Narayan: J. Mater. Sci., 2011, vol. 46, pp. 3191-9.

    Article  Google Scholar 

  2. [2] J. Zhang, H. Di, H. Wang, K. Mao, T. Ma and Y. Cao: J. Mater. Sci., 2012, vol. 47, pp. 4000-11.

    Article  Google Scholar 

  3. [3] J.K. Chakravartty, G.K. Dey, S. Banerjee and Y.V.R.K. Prasad: J. Nucl. Mater., 1995, vol. 218, pp. 247-55.

    Article  Google Scholar 

  4. [4] A. Momeni and K. Dehghani: Mater. Sci. Eng., A, 2010, vol. 527, pp. 5467-73.

    Article  Google Scholar 

  5. [5] S. Anbuselvan and S. Ramanathan: Mater. Des., 2010, vol. 31, pp. 2319-23.

    Article  Google Scholar 

  6. [6] Y. Ning, Z. Yao, H. Guo, M.W. Fu and X. Xie: Mater. Sci. Eng. A, 2010, vol. 527, pp. 6794-9

    Article  Google Scholar 

  7. [7] Y.V.R.K. Prasad, H.L. Gegel, S.M. Doraivelu, J.C. Malas, J.T. Morgan, K.A. Lark and D.R. Barker: Metall. Trans. A, 1984, vol. 15, pp. 1883-92.

    Article  Google Scholar 

  8. [8] E. Cerri, S. Spigarelli, E. Evangelista, and P. Cavaliere: Mater. Sci. Eng A, 2002, vol. 324, pp. 157-61.

    Article  Google Scholar 

  9. Y.V.R.K Prasad: J. Mater. Eng. Perform., 2003, vol. 12, pp. 638-45

    Article  Google Scholar 

  10. [10] N. Srinivasa and Y.V.R.K. Prasad: J. Mater. Process. Technol., 1995, vol. 51, pp. 171-92.

    Article  Google Scholar 

  11. [11] J. Sarkar, Y.V.R.K. Prasad and M.K. Surappa: J. Mater. Sci., 1995, vol. 30, pp. 2843-8.

    Article  Google Scholar 

  12. [12] H.R. Ezatpour, M. Haddad Sabzevar, S.A. Sajjadi and Y. Huang: Mater. Sci. Eng. A, 2014, vol. 606, pp. 240-7.

    Article  Google Scholar 

  13. [13] Richard W. Hertzberg: Deformation and fracture mechanics of engineering materials, 4 th ed., John Wiley and Sons, Inc., USA, 1996, pp. 129-30.

    Google Scholar 

  14. [14] A. Azushima, R. Kopp, A. Korhonen, D.Y. Yang, F. Micari, G.D. Lahoti, P. Grocheg, J. Yanagimotoh, N. Tsujii, A. Rosochowskij and A. Yanagidaa: CIRP Ann. Manuf. Technol., 2008, vol. 57, pp. 716-35.

    Article  Google Scholar 

  15. [15] V.V. Stolyarov, Y.T. Zhu, T.C. Lowe, R.K. Islamgaliev and R.Z. Valiev: Nanostruct. Mater, 1999, vol. 11, pp. 947-54.

    Article  Google Scholar 

  16. [16] C. Suryanarayana and G.E. Korth: Met. Mater. Int., 1999, vol. 5, pp. 121-8.

    Article  Google Scholar 

  17. F. Thümmler and R. Oberacker: Introduction to Powder Metallurgy, The Institute of Materials, Maney Publishing, U.K., 1994, p. 252.

  18. [18] B.Q. Han, E.J. Lavernia and A. Mohamed. Farghalli: Rev. Adv. Mater. Sci., 2005, vol. 9, pp. 1-16.

    Google Scholar 

  19. [19] J.K. Kim, H.K. Kim, J.W. Park and W.J. Kim: Scripta Mater. 2005, vol. 53, pp. 1207-11.

    Article  Google Scholar 

  20. [20] C. Xu and T.G. Langdon: J. Mater. Sci., 2007, vol. 42, pp. 1542-50.

    Article  Google Scholar 

  21. [21] B. Cherukuri, S. Nedkova Teodora and R. Srinivasan: Mater. Sci. Eng. A, 2005, vol. 410, pp. 394-7.

    Article  Google Scholar 

  22. [22] H. Asgharzadeh, A. Simchi and H.S. Kim: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3981-9.

    Article  Google Scholar 

  23. H. Asgharzadeh, S.H. Joo and H.S. Kim: Metall. Mater. Trans. A, 2014, vol. 45, vol. 4129-37

    Article  Google Scholar 

  24. [24] M. S. Mohebbi, A.Akbarzadeh, Y.O. Yoon and S.K. Kim: Mater. Sci. Eng. A, 2014, vol. 593, pp. 136-44.

    Article  Google Scholar 

  25. [25] C. Xu, Z. Horita and T.G. Langdon: Mater. Trans., 2010, vol. 51, pp. 2-7.

    Article  Google Scholar 

  26. [26] B.O. Han, F.A. Mohamed, Z. Lee, S.R. Nutt and E.J. Lavernia: Metall. Mater. Trans. A, 2003, vol. 34, pp. 603-13.

    Article  Google Scholar 

  27. [27] X. Sauvage, A. Ganeev, Y. Ivanisenko, N. Enikeev, M. Murashkin and R. Valiev: Adv. Eng. Mater, 2012, vol. 14, pp. 968-74.

    Article  Google Scholar 

  28. [28] X. Sauvage, G. Wilde, S. V. Divinski, Z. Horita and R. Z. Valiev: Mater. Sci. Eng. A, 2012, vol. 540, pp. 1-12.

    Article  Google Scholar 

  29. [29] D. Chicot, M. Voda, X. Decoopman, V.A. Serban, E.S. Puchi-Cabrera, M.H. Staia and C. Codrean: Mater. Sci. Eng. A, 2011, vol. 528, pp. 7041-51.

    Article  Google Scholar 

  30. [30] B.Q. Han, E.J. Lavernia, F.A. Mohamed: Metall. Mater. Trans. A, 2005, vol. 36, pp. 345-55.

    Article  Google Scholar 

  31. [31] H. Asgharzadeh, A. Simchi and H. S. Kim. Scripta Mater., 2012, vol. 66, pp. 911-4.

    Article  Google Scholar 

  32. [32] H. Asgharzadeh, A. Simchi and H.S. Kim: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4897-905.

    Article  Google Scholar 

  33. [33] H. Asgharzadeh, A. Simchi and H.S. Kim: Metall. Mater. Trans. A, 2011, vol. 42, pp. 16-824.

    Google Scholar 

  34. [34] D.P. Field, L.T. Bradford, M.M. Nowell and T.M. Lillo: Acta Mater., 2007, vol. 55, 4233-41.

    Article  Google Scholar 

  35. [35] A.A. Saleh, A.A. Gazder and E. V. Pereloma: T. Indian. I. Metals, 2013, vol. 66, pp. 621-9.

    Article  Google Scholar 

  36. [36] S.W. Cheong and H. Weiland: Mater. Sci. Forum, 2007, vol. 558, pp. 153-8.

    Article  Google Scholar 

  37. [37] Y.V.R.K. Prasad and T. Seshacharyulu: Mater. Sci. Eng. A, 1998, vol. 243, pp. 82-8.

    Article  Google Scholar 

  38. [38] E. Ma: Scripta. Mater, 2003, vol. 49, pp. 663-8.

    Article  Google Scholar 

  39. [39] Y. Yang, Z. Zhang, X. Li, Q. Wang and Y. Zhang: Mater. Des., 2013, vol. 51, pp. 592-7.

    Article  Google Scholar 

  40. [40] W. Liu, H. Zhao, D. Li, Z. Zhang, G. Huang and Q. Liu: Mater. Sci. Eng. A, 2014, vol. 596, pp. 176-82.

    Article  Google Scholar 

  41. [41] H. Ahamed and V. Senthilkumar: Mater. Sci. Eng. A, 2012, vol. 539, pp. 349-59.

    Article  Google Scholar 

  42. [42] H. Asgharzadeh, A. Simchi and H. S. Kim: Mater. Sci. Eng. A, 2012, vol. 542, pp. 56-63.

    Article  Google Scholar 

  43. [43] H.J. McQueen, S. Spigarelli, M E. Kassner and E. Evangelista: Hot deformation and processing of aluminum alloys, CRC Press, FL, 2011, p. 128.

    Google Scholar 

  44. [44] D.L. Zhang: Prog. Mater. Sci., 2004, vol. 49, pp. 537-60.

    Article  Google Scholar 

  45. [45] C. Suryanarayana: Prog. Mater. Sci., 2001, vol. 46, pp. 1-184.

    Article  Google Scholar 

  46. [46] B.C. Ko and Y.C. Yoo: J. Mater. Sci., 2000, vol. 35, pp. 4073-7.

    Article  Google Scholar 

  47. [47] F.J. Humphreys, P.B. Prangnell, R. Priestner: Curr. Opin. Solid St. Mater. Sci., 2001, vol. 5, pp. 15-21.

    Article  Google Scholar 

  48. [48] J. May, H.W. Hoppel and M. Goken: Scripta Mater., 2005, vol. 53, pp. 189-94.

    Article  Google Scholar 

  49. [49] H. Asgharzadeh and H.J. McQueen: Mater. Sci. Technol., 2015, 31, pp. 1016-1034.

    Article  Google Scholar 

  50. [50] G.S. Rohrer: Metall. Mater. Trans. B, 2010, vol. 41, pp. 457-94.

    Article  Google Scholar 

  51. [51] H. Agarwal, A.M. Gokhale, S. Graham and M. F. Horstemeyer: Mater. Sci. Eng. A, 2003, vol. 341, pp. 35-42.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Asgharzadeh.

Additional information

Manuscript submitted March 1, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asgharzadeh, H., Rahbar Niazi, M. & Simchi, A. A Processing Map for Hot Deformation of an Ultrafine-Grained Aluminum-Magnesium-Silicon Alloy Prepared by Mechanical Milling and Hot Extrusion. Metall Mater Trans A 46, 5900–5908 (2015). https://doi.org/10.1007/s11661-015-3162-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3162-3

Keywords

Navigation