Metallurgical and Materials Transactions A

, Volume 47, Issue 7, pp 3306–3311

Entropy and Diffuse Scattering: Comparison of NbTiVZr and CrMoNbV

Symposium: High Entropy Alloys III

Abstract

The chemical disorder intrinsic to high-entropy alloys inevitably creates diffuse scattering in their X-ray or neutron diffraction patterns. Through first principles hybrid Monte Carlo/molecular dynamics simulations of two BCC high-entropy alloy forming compounds, CrMoNbV and NbTiVZr, we identify the contributions of chemical disorder, atomic size, and thermal fluctuations to the diffuse scattering. As a side benefit, we evaluate the reduction in entropy due to pair correlations within the framework of the cluster variation method. Finally, we note that the preference of Ti and Zr for hexagonal structures at low temperature leads to a mechanical instability reducing the local BCC character of NbTiVZr, while preserving global BCC symmetry.

References

  1. 1.
    O.N. Senkov, S.V. Senkova, D.B. Miracle, C. Woodward, Mat. Sci. Eng. A 565, 51–62 (2013)CrossRefGoogle Scholar
  2. 2.
    M. Widom: in High Entropy Alloys: Fundamentals and Applications, M. Gao, J.-W. Yeh, P. Liaw, and Y. Zhang, eds., Springer, New York, 2015.Google Scholar
  3. 3.
    M. Widom, W.P. Huhn, S. Maiti, W. Steurer, Mat. Met. Trans. A 45, 196–200 (2013)Google Scholar
  4. 4.
    G. Kresse, J. Furthmuller, Phys. Rev. B 54, 11169–86 (1996)CrossRefGoogle Scholar
  5. 5.
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758–75 (1999)CrossRefGoogle Scholar
  6. 6.
    J.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865–68 (1996)CrossRefGoogle Scholar
  7. 7.
    W. Guo, W. Dmowski, J.Y. Noh, P. Rack, P.K Liaw, and T. Egami, Mat. Trans. A 44, 1994–97 (2013)CrossRefGoogle Scholar
  8. 8.
    B. Borie, Acta Cryst. 10, 89–96 (1957)CrossRefGoogle Scholar
  9. 9.
    M. A. Krivoglaz, Diffuse Scattering of X-rays and Neutrons by Fluctuations (Springer, 1996)CrossRefGoogle Scholar
  10. 10.
    W. Schweika: Disordered Alloys: Diffuse Scattering and Monte Carlo simulations, Springer Tracts in Modern Physics, vol. 141, Springer, Berlin, 1998Google Scholar
  11. 11.
    T.R. Welberry: Diffuse X-ray Scattering and Models of Disorder, IUCR Monographs on Crystallography, vol. 16, Oxford University Press, Oxford, 2004Google Scholar
  12. 12.
    V. Blum, A. Zunger, Phys. Rev. B 72, 02010R (2005)Google Scholar
  13. 13.
    B.E. Warren, B.L. Averbach, and B.W. Roberts, J. Appl. Phys. 22, 1493–96 (1951)CrossRefGoogle Scholar
  14. 14.
    T. Egami and S. J. L. Billinge, Underneath the Bragg Peaks, vol. 16 of Pergamon Materials Series (Elsevier, 2013)Google Scholar
  15. 15.
    I.B. Ramsteiner, O. Shchyglo, M. Mezger, A. Udyansky, V. Bugaev, S. Schoder, H. Reichert, H. Dosch, Acta Mater. 56, 1298–305 (2008)CrossRefGoogle Scholar
  16. 16.
    D. de Fontaine: in Solid State Physics, H. Ehrenreich and D. Turnbull, eds., Academic Press, New York, 1979, vol. 34, pp. 73–274.Google Scholar
  17. 17.
    D. de Fontaine: in Solid State Physics, H. Ehrenreich and D. Turnbull, eds., Academic Press, New York, 1994, vol. 47, pp. 33–176.Google Scholar
  18. 18.
    W.L. Bragg, E.J. Williams, Proc. R. Soc. Lond. A 145, 699–730 (1934)CrossRefGoogle Scholar
  19. 19.
    E.A. Guggenheim, Proc. R. Soc. Lond. A 183, 213–27 (1944)CrossRefGoogle Scholar
  20. 20.
    H. Ackermann, G. Inden, R. Kikuchi, Acta Metall. 37, 1–7 (1989)CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2015

Authors and Affiliations

  1. 1.Department of PhysicsCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations