Skip to main content

Advertisement

Log in

Investigation of Phase Transformations in High-Alloy Austenitic TRIP Steel Under High Pressure (up to 18 GPa) by In Situ Synchrotron X-ray Diffraction and Scanning Electron Microscopy

  • Symposium: CRC799 Contribution
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In order to clarify the difference between the deformation-induced ε-martensite (ε 1) and the pressure-induced ε-iron (ε 2), high-pressure quasi-hydrostatic experiments were performed on a low-carbon, high-alloy metastable austenitic steel. In situ synchrotron X-ray diffraction measurements as well as post-mortem investigations of the microstructure by electron backscatter diffraction were carried out to study the microstructural transformations. Three processes were observed during compression experiments: first, the formation of deformation-induced hexagonal ε 1-martensite, as well as small nuclei of deformation-induced bcc α′-martensite (α 1′) within the fcc γ-matrix due to non-hydrostaticity in the experiments; second, the onset of the phase transformation from the metastable fcc γ-austenite into the hexagonal pressure-induced ε 2-iron phase occurred at around 6 GPa; third, during decompression, the hexagonal pressure-induced ε 2-iron transformed partially into bcc α′-martensite (α 2′). Completely different characteristics with regard to habitus as well as to orientation relationships were observed between the pressure-induced phases (ε 2-iron phase and α 2′-martensite) and the deformation-induced martensites (ε 1- and α 1′-martensite).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. A.F. Birch and H. Clark, Am. J. Sci., 1940, vol. 238, pp. 529-58.

    Article  Google Scholar 

  2. P. W. Bridgman, J. Appl. Phys., 1956, vol. 27, pp. 659-60.

    Article  Google Scholar 

  3. D. Bancroft, E. L. Peterson and S. Minshall, J. Appl. Phys., 1956, vol. 27, pp. 291-98.

    Article  Google Scholar 

  4. S. J. Wang, M.L. Sui, Y.T. Chen, Q.H. Lu, E. Ma, X.Y. Pei, Q.Z. Li and H.B. Hu, Sci. Rep., 2013, vol. 3, pp. 1-6.

    Google Scholar 

  5. F.P. Bundy, J. Appl. Phys., 1965, vol. 36, pp. 616-20.

    Article  Google Scholar 

  6. T.R. Loree, C.M. Fowler, E.G. Zukas and F.S. Minshall, J. Appl. Phys., 1966, vol. 37, pp. 1918-27.

    Article  Google Scholar 

  7. P. C. Johnson, B. A. Stein and R. S. Davis, J. Appl. Phys., 1962, vol. 33, pp. 557-611.

    Article  Google Scholar 

  8. A. Balchan and H. G. Drickamer, Rev. Sci. Instrum., 1961, vol. 32, pp. 308-13.

    Article  Google Scholar 

  9. J.C. Jamieson and A.W. Lawson, J. Appl. Phys., 1962, vol. 33, pp. 776-80.

    Article  Google Scholar 

  10. R. Clendenen and H. Drickamer, J. Phys. Chem. Solids, 1964, vol.25, pp. 865-68.

    Article  Google Scholar 

  11. W.A. Bassett, T. Takahashi and P.W. Stook, Rev. Sci. Instrum., 1967, vol. 38, pp. 37-42.

    Article  Google Scholar 

  12. H.-K. Mao, W.A. Bassett and T. Takahashi, J. Appl. Phys., 1967, vol. 38, pp. 272-76.

    Article  Google Scholar 

  13. L.E. Millet and D.L. Decker, Phys. Lett. A, 1969, vol. 29, pp. 7-8.

    Article  Google Scholar 

  14. D.N. Pipkorn, C.K. Edge, P. Debrunner, G. de Pasquali, H.G. Drickhamer and H. Frauenfelder, Phys. Rev. A, 1964, vol. 135, pp. 1604-12.

    Article  Google Scholar 

  15. U. Chandra, P. Sharma, G. Parthasarathy and B. Sreedhar, American Mineralogist, 1999, vol. 95, pp. 870-75.

    Article  Google Scholar 

  16. P.M. Giles, M.H. Longenbach and A.R. Marder, J. Appl. Phys., 1971, vol. 42, pp. 4290-95.

    Article  Google Scholar 

  17. T. Takahashi and W.A. Bassett, Science, 1964, vol. 145, pp. 483-86.

    Article  Google Scholar 

  18. R. Boehler, N. von Bargen and A. Chopelas, J. Geophys. Res., 1990, vol. 95, pp. 21731-36.

    Article  Google Scholar 

  19. N. von Bargen and R. Boehler, High Press. Res., 1990, vol. 6, pp. 133-40.

    Article  Google Scholar 

  20. M.H. Manghnani, L.C. Ming, and N. Nakagiri: in High-Pressure Research in Mineral Physics, M.H. Manghnani and Y. Syono, eds., AGU, Washington, DC, 1987, pp. 155–163.

  21. P. Söderlind, J.A. Moriarty and J.M. Wills, Phys. Rev. B, 1996, vol. 53, pp. 14063-72.

    Article  Google Scholar 

  22. T. Komabayashi, Y. Fei, Y. Meng and V. Prakapenka, Earth Planet. Sci. Lett., 2009, vol. 282, pp. 252-57.

    Article  Google Scholar 

  23. Y. Ma, E. Selvi, V.I. Levitas and J. Hashemi, J. Phys.: Condens. Matter, 2006, vol. 18, pp. S1075–82.

    Google Scholar 

  24. P.M. Giles and A.R. Marder, Metall. Trans., 1971, vol. 2, pp. 1371-78.

    Google Scholar 

  25. L.D. Blackburn, L. Kaufman and M. Cohen. Acta Metall., 1965, vol. 13, pp. 533-41.

    Article  Google Scholar 

  26. R. Boehler. Geophys. Res. Lett., 1986, vol. 13, pp. 1153-56.

    Article  Google Scholar 

  27. H.K. Mao, Y. Wu, L.C. Chen, J.F. Shu and A.P. Jephcoat, J. Geophys. Res., 1990, vol. 95, pp. 21737-42.

    Article  Google Scholar 

  28. S. Akimoto, T. Suzuki, T. Yagi, and O. Shimomura: in High-Pressure Research in Mineral Physics, M.H. Manghnani and Y. Syono, eds., AGU, Washington, DC, 1987, pp. 149–154.

  29. T. Uchida, Y. Wang, M.L. Rivers and S.R. Sutton, J. Geophys. Res., 2001, vol. 106, pp. 799-821.

    Google Scholar 

  30. A. Kubo, E. Ito, T. Katsura, T. Shinmei, H. Yamada, O. Nishikawa, M. Song and K. Funakoshi, Geophys. Res. Lett., 2003, vol. 30, pp. 1126.

    Article  Google Scholar 

  31. A.P. Jephcoat, H.-K. Mao and P.M. Bell, J. Geophys. Res., 1986, vol. 91, pp. 4677-84.

    Article  Google Scholar 

  32. W.A. Bassett and E. Huang, Science, 1987, vol. 238, pp. 780-83.

    Article  Google Scholar 

  33. E. Huang, W.A. Bassett, and P. Tao: in High-Pressure Research in Mineral Physics, M.H. Manghnani and Y. Syono, eds., AGU, Washington, DC, 1987, pp. 165–172.

  34. F. M. Wang and R. Ingalls, Phys. Rev. B, 1998, vol. 57, pp. 5647-54.

    Article  Google Scholar 

  35. J.F. Breedis and L. Kaufman, Metall. Trans. 1971, vol. 2, pp. 2359-71.

    Article  Google Scholar 

  36. J. Hawreliak, J.D. Colvin, J.H. Eggert, D.H. Kalantar, H.E. Lorenzana, J.S. Stolken, H.M. Davies, T.C. Germann, B.L. Holian, K. Kadau et al., Phys. Rev. B, 2006, vol. 74, pp. 184107.

    Article  Google Scholar 

  37. J.A. Hawreliak, B. El-Dasher and H. Lorenzana, Phys. Rev. B, 2011, vol. 83, p. 144114.

    Article  Google Scholar 

  38. H.K. Mao, Y. Wu, L.C. Chen, J.F. Shu and A.P. Jephcoat, J. Geophys. Res., 1990, vol. 95, pp. 21737-42.

    Article  Google Scholar 

  39. G. Steinle-Neumann, L. Stixrude and R.E. Cohen, Phys. Rev. B, 1999, vol. 60, pp. 791–99.

    Article  Google Scholar 

  40. A. Dewaele, P. Loubeyre, F. Occelli, M. Mezouar, P.I. Dorogokupets and M. Torrent, Phys. Rev. B, 2006, vol. 97, pp. 215504.

    Google Scholar 

  41. A. Rabinkin, Calphad, 1979, vol. 3, pp. 77-84.

    Article  Google Scholar 

  42. S. Ono, T. Kikegawa, N. Hirao and K. Mibe, Am. Mineral., 2010, vol. 95, pp. 880-83.

    Article  Google Scholar 

  43. Y.S. Mohammed, Y. Yan, H. Wang, K. Li and X. Du, J. Magn. Magn. Mater., 2010, vol. 322, pp. 653-57.

    Article  Google Scholar 

  44. Z. Lu, W. Zhu, T. Lu and W. Wang, Modell. Simul. Mater. Sci. Eng., 2014, vol. 22, pp.1-19.

    Google Scholar 

  45. R. Torchio, Y.O. Kvashnin, C. Marini, O. Mathon, G. Garbarino, M. Mezouar, J.P. Wright, P. Bruno, L. Genovese, F. Baudelet, C. Meneghini, S. Mobilio, N.A. Morley, M.R.J. Gibbs and S. Pascarelli, Phys. Rev. B, 2013, vol. 88, pp. 184412.

    Article  Google Scholar 

  46. A. Monza, A. Meffre, F. Baudelet, J.-P. Rueff, M. d’Astuto, P. Munsch, S. Huotari, S. Lachaize, B. Chaudret and A. Shukla, Phys. Rev. Lett., 2011, vol. 106, pp. 247201.

    Article  Google Scholar 

  47. J.P. Rueff, M. Krisch, Y.Q. Cai, A. Kaprolat, M. Hanfland, M. Lorenzen, C. Masciovecchio, R. Verberi and F. Sette, Phys. Rev. B, 1999, vol. 60, pp. 14510-12.

    Article  Google Scholar 

  48. G. Cort, R.D. Taylor and J.O. Wills, J. Appl. Phys., 1983, vol. 53, pp. 2064-65.

    Article  Google Scholar 

  49. R.D. Taylor, M.P. Pasternak and R. Jeanloz, J. Appl. Phys., 1991, vol. 69, pp. 6126-29.

    Article  Google Scholar 

  50. L. Nataf, F. Decremps and J. C. Chervin, Phys. Rev. B, 2009, vol. 80, pp. 134404.

    Article  Google Scholar 

  51. O. Mathon, F. Baudelet, J.P. Itié, A. Polian, M. d’Astuto, J.C. Chervin and S. Pascarelli, Phys. Rev. Lett., 2004, vol. 93, pp. 1-4.

    Article  Google Scholar 

  52. F. Baudelet, S. Pascarelli, O. Mathon, J.P. Itié, A. Polian, M. d’Astuto and J.C. Chervin, J. Phys. Condens. Matter, 2005, vol. 17, pp. S957--66.

    Article  Google Scholar 

  53. K. Ishida, Scripta Metall., 1977, vol. 11, pp. 237-42.

    Article  Google Scholar 

  54. S. Merkel, H.P. Liermann, L. Miyagi and H.R. Wenk, Acta Mater., 2013, vol. 61, pp. 5144-51.

    Article  Google Scholar 

  55. M. Matsushita, S. Nakano, H. Ohfuji, I. Yamada and T. Kikegawa, J. Magn. Magn. Mater., 2011, vol. 323, pp. 838-41.

    Article  Google Scholar 

  56. F. Trichter, A. Rabinkin, M. Ron and A. Sharfstein, Scripta. Metall., 1978, vol. 12, pp. 431-34.

    Article  Google Scholar 

  57. E. Gartstein and A. Rabinkin, Acta Metall., 1979, vol. 27, pp. 1053-64.

    Article  Google Scholar 

  58. A. Kovalev, A. Jahn, A. Weiß and P.R. Scheller, Steel Res. Int., 2011, vol. 82, pp. 45-50.

    Article  Google Scholar 

  59. A. Jahn, A. Kovalev, A. Weiß, P. R. Scheller, S. Wolf, and L. Krüger: Proceedings Esomat 2009, P. Sittner, L. Heller, and V. Paidar, eds., 2009.

  60. L. Krüger, S. Wolf, U. Martin, S. Martin, P.R. Scheller, A. Jahn and A. Weiß, J. Phys. Conf. Ser., 2010, vol. 240, pp. 1-4.

    Google Scholar 

  61. D. Kulawinski, S. Ackermann, A. Glage, S. Henkel and H. Biermann, Steel Res. Int., 2011, vol. 82, pp. 1141-48.

    Article  Google Scholar 

  62. L. Krüger, S. Wolf, S. Martin, U. Martin, A. Jahn, A. Weiß and P.R. Scheller, Steel Res. Int., 2011, vol. 82, pp. 1087-93.

    Article  Google Scholar 

  63. A. Glage, A. Weidner and H. Biermann, Steel Res. Int., 2011, vol. 82, pp. 1040-47.

    Article  Google Scholar 

  64. A. Jahn, A. Kovalev, A. Weiß, S. Wolf, L. Krüger and P.R. Scheller, Steel Res. Int., 2011, vol. 82, pp. 39-44.

    Article  Google Scholar 

  65. H. Schumann, Wissenschaftliche Berichte des Zentralinstitutes für Festkörper- und Werkstoffforschung, 1979, vol. 20, pp. 137-57.

    Google Scholar 

  66. S. Martin, S. Wolf, U. Martin, L. Krüger, and A. Jahn: Proceedings Esomat 2009, P. Sittner, L. Heller, and V. Paidar, eds., 2009.

  67. A. Weidner, A. Glage and H. Biermann, Proc. Eng., 2010, vol. 2, pp. 1961-71.

    Article  Google Scholar 

  68. S. Martin, C. Ullrich, D. Simek, U. Martin and D. Rafaja, J. App. Cryst., 2011, vol. 44, pp. 779-87.

    Article  Google Scholar 

  69. A. Weidner, S. Martin, V. Klemm, U. Martin, D. Rafaja and H. Biermann, Scripta Mater., 2011, vol. 64, pp. 513-16.

    Article  Google Scholar 

  70. D. Rafaja, C. Krbetschek, D. Borisova, H. Schreiber and V. Klemm, Thin Solid Films, 2013, vol. 530, pp. 105-12.

    Article  Google Scholar 

  71. S. Martin: PhD Thesis, Technische Universität Bergakademie Freiberg, 2013, ISBN: 978-3-86012-477-2.

  72. S. Martin, C. Ullrich, and D. Rafaja: Proceedings ICOMAT 2014, Materials Today (in press).

  73. H. Schumann, Kristall und Technik, 1976, vol. 11, pp. 663-71.

    Article  Google Scholar 

  74. H. Schumann, Kristall und Technik, 1977, vol. 12, pp. 363-70.

    Article  Google Scholar 

  75. G.B. Olson and M. Cohen, Met. Mat. Trans. A, 1975, vol. 6A, pp. 791-95.

    Article  Google Scholar 

  76. G.B. Olson and M. Cohen, J. Less-Common Met., 1972, vol. 28, pp. 107-18.

    Article  Google Scholar 

  77. G.B. Olson: in Deformation, Processing and Structure, G. Krauss, ed., ASM, Metals Park, 1984, pp. 391–424.

  78. V.I. Levitas, A.V. Idesman and G.B. Olson, Acta Mater., 1999, vol. 47, pp. 219-33.

    Article  Google Scholar 

  79. V.I. Levitas, Phys. Rev. B, 2004, vol. 70, pp. 184118.

    Article  Google Scholar 

  80. V.I. Levitas: in High Pressure Surface Science and Engineering, Y. Gogotsi and V. Domnich, eds., Institute of Physics Publishing, Bristol, 2004, pp. 159-292.

  81. B. Feng, V.I. Levitas, and O.M. Zarechnyy, J. Appl. Phys., 2013, vol. 114, pp. 043506.

    Article  Google Scholar 

  82. H. Schumann, Krist. Tech., 1974, vol. 9, pp. 33-44.

    Article  Google Scholar 

  83. J.-B. Seol, B.-H Lee, P. Choi, S.-G. Lee and C.-G. Park, Ultramicroscopy, 2013, vol. 132, pp. 248-57.

    Article  Google Scholar 

  84. J.-B. Seol, J.E. Jung, Y.W. Jang and C.G. Park, Acta Mater., 2013, vol. 61, pp. 558-78.

    Article  Google Scholar 

  85. A. Weiß, H. Gutte, M. Radke, and P.R. Scheller, Patent Specification WO002008009722A1.

  86. D.C. Rubie, Phase Transit., 1999, vol. 68, pp. 431-51.

    Article  Google Scholar 

  87. B. Jürgens, E. Irran, J. Senker, P. Kroll, H. Müller and W. Schnick, J. Am. Chem. Soc., 2003, vol. 125, pp. 10288-300.

    Article  Google Scholar 

  88. T. Irifune, Mineral. Mag., 2002, vol. 6, pp. 769-90.

    Article  Google Scholar 

  89. H.J. Müller, F.R. Schilling, C. Lathe and J. Lauterjung, High Press. Res., 2006, vol. 26, pp. 529-37.

    Article  Google Scholar 

  90. M. Schwarz, T. Barsukova, C. Schimpf, G. Li, D. Rafaja, and E. Kroke: 2nd Workshop for Extreme Conditions Research in a Large Volume Press at PETRA III, DESY/Hasylab, 2012.

  91. M.F. Bekheet, M.R. Schwarz, S. Lauterbach, H.-J. Kleebe, P. Kroll, A. Stewart, U. Kolb, R. Riedel and A. Gurlo, High Press. Res., 2013, vol. 33, pp. 697-711.

    Article  Google Scholar 

  92. J. Osugi, K. Shimizu, K. Inoue and K. Yasunami, Rev. Phys. Chem. Japan, 1964, vol. 34, pp. 1-6.

    Google Scholar 

  93. D. Walker, Am. Mineral., 1991, vol. 76, pp. 1092-100.

    Google Scholar 

  94. D. Walker, M. A. Carpenter and C.M. Hitch, Am. Mineral., 1990, vol. 75, pp. 1020-28.

    Google Scholar 

  95. D. Rafaja, C. Krbetschek, C. Ullrich and S. Martin, J. Appl. Cryst., 2014, vol. 47, pp. 936-47.

    Article  Google Scholar 

  96. A.G. Every and A.K. McCurdy: in Springer Materials—The Landolt–Börnstein Database, D.F. Nelson, ed., 2011.

  97. H. Cynn, C. Yoo, Phys. Rev. B, 1999, vol. 59, pp. 8526-69.

    Article  Google Scholar 

  98. K. Takemura, Phys. Rev. B, 1991, vol. 44, pp. 545-49.

    Article  Google Scholar 

  99. J. Shanker, S.S. Kushwah and P. Kumar, Physica B, 1997, vol. 239, pp. 337-44.

    Article  Google Scholar 

  100. D.L. Decker, J. Appl. Phys., 1971, vol. 42, pp. 3239-44.

    Article  Google Scholar 

  101. B. Warren, X-ray Diffraction, Courier Dover Publications, New York 1990.

    Google Scholar 

  102. ICSD: Inorganic Crystal Structure Database on CD-ROM, Version 2013–1. FIZ Karlsruhe, Germany, and NIST, Gaithersburg, MD, USA, 2013.

  103. Z. Nishijama, Martensitic Transformations, Academic Press, London (1978).

    Google Scholar 

  104. G.V. Kurdjumov and G. Sachs, Z. Phys., 1930, vol. 32, pp. 325-43.

    Article  Google Scholar 

  105. M. Paterson, J. Appl. Phys., 1952, vol. 23, pp. 805-11.

    Article  Google Scholar 

  106. A. Vingradov, A. Lazarev, M. Linderov, A. Weidner and H. Biermann, Acta Mater., 2013, vol. 61, pp. 2434-49.

    Article  Google Scholar 

  107. S. Wolf, S. Martin, L. Krüger and U. Martin, Mater. Sci. Eng. A, 2014, vol. 594, pp.72-81.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank the German Research Foundation for its financial support of the Collaborative Research Centre “TRIP-Matrix Composites” (CRC 799). Dr. A. Jahn and Dr. T. Kreschel (Institute of Iron and Steel Technology) are gratefully acknowledged for providing the material used and for the heat treatment, respectively. Dr. S. Guk (Institute of Metal Forming) is acknowledged for the hot rolling of the material. Furthermore, the authors thank Ms. K. Zuber, Ms. Y. Klemm, and Mr. C. Segel (Institute of Materials Engineering) for specimen preparation and further experimental assistance. All institutes mentioned belong to the TU Bergakademie Freiberg, Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephanie Ackermann.

Additional information

Manuscript submitted August 8, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ackermann, S., Martin, S., Schwarz, M.R. et al. Investigation of Phase Transformations in High-Alloy Austenitic TRIP Steel Under High Pressure (up to 18 GPa) by In Situ Synchrotron X-ray Diffraction and Scanning Electron Microscopy. Metall Mater Trans A 47, 95–111 (2016). https://doi.org/10.1007/s11661-015-3082-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3082-2

Keywords

Navigation