Skip to main content
Log in

Microstructural Evolution and Phase Formation in Rapidly Solidified Ni-25.3 At. Pct Si Alloy

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The drop-tube technique was used to solidify droplets of the Ni-25.3 at. pct Si alloy at high cooling rates. XRD, SEM, and TEM analysis revealed that the metastable phase, Ni25Si9, formed as the dominant phase in all ranges of the droplets, with γ-Ni31Si12 and β 1-Ni3Si also being present. Three different microstructures were observed: the regular and anomalous eutectic structures and near single-phase structure containing small inclusions of a second phase, termed here as heteroclite structure. Both eutectic structures comprise alternating lamellae of Ni25Si9 and β 1-Ni3Si, which, we conjecture, is a consequence of an unobserved eutectic reaction between the Ni25Si9 and β 1-Ni3Si phases. The matrix of the heteroclite structure is also identified as the metastable phase Ni25Si9, in which twined growth is observed in the TEM. As the cooling rate is increased (particle size decreased), the proportion of droplets displaying the entire heteroclite structure tends to increase, with its fraction increasing from 13.91 pct (300 to 500 µm) to 40.10 pct (75 to 106 µm). The thermodynamic properties of the Ni25Si9 phase were also studied by in-situ heating during XRD analysis and by DTA. This showed the decomposition of Ni25Si9 to β 1 and γ-Ni31Si12 for temperatures in excess of 790 K (517 °C).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. C.M. Ward-Close, R. Minor and P. Doorbar: Intermetallics, 1996, vol. 4, pp. 217–229.

    Article  Google Scholar 

  2. C. Cui, J. Zhang, K. Wu, Y. Ma, L. Liu and H. Fu: Phys. B Condens. Matter, 2012, Vol. 407, pp. 3566-3569.

    Article  Google Scholar 

  3. R.L. Fleischer: J. Mater. Sci., 1987, vol. 22, pp. 2281-2288.

    Article  Google Scholar 

  4. E.M. Schulson, L.J. Briggs and I. Baker: Acta Metall. Mater., 1990, vol. 38, pp. 207-213.

    Article  Google Scholar 

  5. N.S. Stoloff, C.T. Liu and S.C. Deevi: Intermetallics, 2000, vol. 8, pp. 1313-1320.

    Article  Google Scholar 

  6. T. Takasugi, H. Suenaga and O. Izumi: J Mater Sci., 1991, vol. 26, pp. 1179–1186.

    Article  Google Scholar 

  7. J.M. Yang: JOM, 1997, vol. 49, pp. 40–43.

    Article  Google Scholar 

  8. M. Leonhardt, W. Löser and H.G. Lindenkreuz: Mater. Sci. Eng. A, 1999, vol. 271, pp. 31–37.

    Article  Google Scholar 

  9. E. Çadırlı, D.M. Herlach and T. Volkmann: J. Non-Cryst. Solids, 2010, vol. 356, pp. 461–466.

    Article  Google Scholar 

  10. H. Bei, G.M. Pharr and E.P. George: J. Mater. Sci., 2004, vol. 39, pp. 3975–3984.

    Article  Google Scholar 

  11. R. Caram and S. Milenkovic: J. Cryst. Growth, 1999, vol. 198–199, pp. 844–849.

    Article  Google Scholar 

  12. A.T. Dutra, P.L. Ferrandini and R. Caram: J. Alloy Compd., 2007, vol. 432, pp. 167–171.

    Article  Google Scholar 

  13. S. Milenkovic and R. Caram: J. Cryst. Growth, 2002, vol. 237–239, pp. 95–100.

    Article  Google Scholar 

  14. D.M. Herlach: Mater. Sci. Eng. R Rep., 1994, vol. 12, pp. 177–272.

    Article  Google Scholar 

  15. E.M. Schulson and D.R. Barker: Scripta. Metall., 1983, vol. 17, pp. 519–522.

    Article  Google Scholar 

  16. Y. Kaneno, M. Wada, H. Inoue, and T. Takasugi: Mater. Trans., vol. 42, pp. 418–21.

  17. R.W. Cahn, P.A. Siemers, J.E. Geiger and P. Bardhan: Acta Metall., 1987, vol. 35, pp. 2737–2751.

    Article  Google Scholar 

  18. R.W. Cahn, P.A. Siemers and E.L. Hall: Acta Metall., 1987, vol. 35, pp. 2753–2764.

    Article  Google Scholar 

  19. F. Liu, Y. Chen, G. Yang, Y. Lu, Z. Chen and Y. Zhou: J. Mater. Res., 2007, vol. 22, pp. 2953–2963.

    Article  Google Scholar 

  20. Y. Lu, N. Liu, T. Shi, D. Luo, W. Xu and T. Li: J. Alloy Compd., 2010, vol. 490, pp. L1–L4.

    Article  Google Scholar 

  21. Y. Lu, F. Liu, G. Yang, H. Wang and Y. Zhou: Mater. Lett., 2007, vol. 61, pp. 987–990.

    Article  Google Scholar 

  22. M. Schwarz A. Karma, K. Eckler and D.M. Herlach: Phys. Rev. Lett., 1994, vol. 73, pp. 1380–1383.

    Article  Google Scholar 

  23. A.M. Mullis and R.F. Cochrane: J. Appl. Phys., 1997, vol. 82, pp. 3783–3790.

    Article  Google Scholar 

  24. A.M. Mullis and R.F. Cochrane: Acta Mater., 2001, vol. 49, pp. 2205–2214.

    Article  Google Scholar 

  25. R. Goetzinger, M. Barth and D.M. Herlach: Acta Mater., 1998, vol. 46, pp. 1647–1655.

    Article  Google Scholar 

  26. A.T. Dutra, S. Milenkovic, C.S. Kiminami, A.M. Santino, M.C. Gonçalves and R. Caram: J. Alloy Compd., 2004, vol. 381, pp. 72–76.

    Article  Google Scholar 

  27. R. Ahmad, R.F. Cochrane and A.M. Mullis: Intermetallics, 2012, vol. 22, pp. 55–61.

    Article  Google Scholar 

  28. R.F. Cochrane, A.L. Greer, K. Eckler and D.M. Herlach: Mater. Sci. Eng. A., 1991, vol. 133, pp. 698–701.

    Article  Google Scholar 

  29. Y. Lu, G. Yang, X Li and Y. Zhou: J. Mater. Sci. Technol., 2009, vol. 25, pp. 370–372.

    Google Scholar 

  30. L. Cao, R.F. Cochrane, and A.M. Mullis: J. Alloy Compd., in Press.

  31. Mullis, A.M., L.G. Cao, R.F. Cochrane: Mater. Sci. Forum, 2014, vol. 790–791, pp. 22–27.

    Article  Google Scholar 

  32. M. Ellner, S. Heinrich, M.K. Bhargava and K. Schubert: J. Less Common Met., 1979, vol. 66, pp. 163–173.

    Article  Google Scholar 

  33. E. Karaköse and M. Keskin: J. Alloy Compd., 2012, vol. 528, pp. 63–69.

    Article  Google Scholar 

  34. G. Kasperovich, T. Volkmann, L. Ratke, D.M. Herlach: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1183–1191.

    Article  Google Scholar 

  35. D.M. Herlach, R.F. Cochrane, I. Egry, H.J. Fecht and A.L. Greer: Int. Mater. Rev., 1993, vol. 38, pp. 273–347.

    Article  Google Scholar 

  36. B. Wei, G. Yang and Y. Zhou: Acta Metall. Mater., 1991, vol. 39, pp. 1249–1258.

    Article  Google Scholar 

  37. C.R. Clopet, R.F. Cochrane and A.M. Mullis: Acta Mater., 2013, vol. 61, pp. 6894–6902.

    Article  Google Scholar 

  38. J.F. Li, W.Q. Jie, S. Zhao and Y.H. Zhou: Metall. Mater. Trans. A, 2007, vol. 38A, pp. 1806–1816.

    Article  Google Scholar 

  39. G.A. Bertero, W.H. Hofmerster, M.B. Robinson and R.J. Bayuzick: Metall. Trans. A, 1991, vol. 22A, pp. 2723–2732.

    Article  Google Scholar 

  40. H. Fredriksson and T. Nylen: Met. Sci., 1982, vol. 16, pp. 283–294.

    Article  Google Scholar 

  41. D.H. StJohn: Acta Metall. Mater., 1990, vol. 38, pp. 631–636.

    Article  Google Scholar 

  42. N.J.W. Barker and A. Hellawell: Met. Sci., 1974, vol. 8, pp. 353–356.

    Article  Google Scholar 

  43. L. Bendersky, F.S. Biancaniello, W.J. Boettinger and J.H. Perepezko: Mater. Sci. Eng., 1987, vol. 89, pp. 151–159.

    Article  Google Scholar 

Download references

Acknowledgment

The authors acknowledge financial supports of the China Scholarship Council (CSC)—University of Leeds scholarship program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew M. Mullis.

Additional information

Manuscript Submitted August 1, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, L., Cochrane, R.F. & Mullis, A.M. Microstructural Evolution and Phase Formation in Rapidly Solidified Ni-25.3 At. Pct Si Alloy. Metall Mater Trans A 46, 4705–4715 (2015). https://doi.org/10.1007/s11661-015-3070-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3070-6

Keywords

Navigation