Role of Carbide Precipitates and Process Parameters on Achieving Grain Boundary Engineered Microstructure in a Ni-Based Superalloy

Abstract

Thermo-mechanical processing (one-step and iterative) comprising strain (5, 10, and 15 pct cold rolling) and annealing [at 1273 K, 1323 K, and 1373 K (1000 °C, 1050 °C, and 1100 °C) for different times of 30 minutes, 1 and 2 hours] were employed to realize a grain boundary engineered (GBE) microstructure in alloy 617. Among the single-step routes, the process employing 15 pct cold reduction and annealing at 1373 K (1100 °C) for 1 hour was found to be effective in increasing the fraction of Σ3 boundaries; however, it also induced partial recrystallization. The iterative processing employing lower reductions and higher annealing temperatures failed to realize GBE microstructure. The second-phase carbides in this material effectively pin the boundaries thus requiring higher pre-strain to initiate the boundary migration and subsequent multiple twinning events. The iterative processing designed based on the outcomes of the single step route resulted in GBE microstructure by significantly increasing the Σ3 fraction and substantially disrupting the random high-angle grain boundaries connectivity. The newly added Σ3 boundaries in the GBE microstructure predominantly terminated on (111) plane indicating that they have low-energy configuration. The GBE specimen has shown remarkable resistance to intergranular corrosion as compared to the as-received condition.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. 1.

    P. Xu, L.Y. Zhao, K. Sridharan, and T.R. Allen: J. Nucl. Mater., 2012, vol. 422, pp. 143 - 151.

    Article  Google Scholar 

  2. 2.

    M. Kurban, U. Erb, and K.T. Aust: Scripta Mater., 2006, vol. 54, pp. 1053 - 1058.

    Article  Google Scholar 

  3. 3.

    S. Bechtle, M. Kumar, B.P. Somerday, M.E. Launey, and R.O. Ritchie: Acta Mater., 2009, vol. 57, pp. 4148 - 4157.

    Article  Google Scholar 

  4. 4.

    S. Kobayashi, S. Tsurekawa, T. Watanabe, and G. Palumbo: Scripta Mater., 2010, vol. 62, pp. 294 - 297.

    Article  Google Scholar 

  5. 5.

    H. Kokawa, M. Shimada, M. Michiuchi, Z.J. Wang, and Y.S.Sato: Acta Mater., 2007, vol. 55, pp. 5401 – 5407.

    Article  Google Scholar 

  6. 6.

    C. Hu, S. Xia, H. Li, T. Liu, B. Zhou, W. Chen, and N. Wang: Corrosion Sci., 2011, vol. 53, pp. 1880 – 1886.

    Article  Google Scholar 

  7. 7.

    E.A. West, and G.S. Was: J. Nucl. Mater., 2009, vol. 392, pp. 264 – 271.

    Article  Google Scholar 

  8. 8.

    S. Spigarelli, M. Cabibbo, E. Evangelista, and G. Palumbo: Mater. Sci. Eng. A, 2003, vol. 352, pp. 93 - 99.

    Article  Google Scholar 

  9. 9.

    Y. Gao, M. Kumar, R.K. Nalla, and R.O. Ritchie: Metall. Mater. Trans. A, 2005, vol. 36A, pp. 3325 – 3333.

    Article  Google Scholar 

  10. 10.

    S. Kobayashi, T. Maruyama, S. Tsurekawa, and T. Watanabe: Acta Mater., 2012, vol. 60, pp. 6200 - 6212.

    Article  Google Scholar 

  11. 11.

    B.W. Reed, M. Kumar, R.W. Minich, and R.E. Rudd: Acta Mater., 2008, vol. 56, pp. 3278 - 3279.

    Article  Google Scholar 

  12. 12.

    R. Jones, and V. Randle: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4275 - 4280.

    Article  Google Scholar 

  13. 13.

    S. Mandal, K.G. Pradeep, S. Zaefferer, H. Zhang, and D. Raabe: Acta Mater., communicated.

  14. 14.

    D.M. Saylor, B.S. El-Dasher, A.D. Rollett, and G.S. Rohrer: Acta Mater., 2004, vol. 52, pp. 3649 - 3655.

    Article  Google Scholar 

  15. 15.

    C.S. Kim, Y. Hu, G.S. Rohrer, and V. Randle: Scripta Mater., 2005, vol. 52, pp. 633 – 637.

    Article  Google Scholar 

  16. 16.

    S. Mandal, V.S. Sarma, and A.K. Bhaduri: J. Mater. Sci., 2011, vol. 46, pp. 275 – 284.

    Article  Google Scholar 

  17. 17.

    L. Tan, T.R. Allen, and J.T. Busby: J. Nucl. Mater., 2013, vol. 441, pp. 661 –666.

    Article  Google Scholar 

  18. 18.

    V. Randle: Acta Mater., 1998, vol. 46, pp. 1459 – 1480.

    Article  Google Scholar 

  19. 19.

    M. Coleman, and V. Randle: Metall. Mater. Trans. A, 2008, vol. 39, pp. 2175 – 2183.

    Article  Google Scholar 

  20. 20.

    G.S. Rohrer, V. Randle, C.S. Kim, and Y. Hu: Acta Mater., 2006, vol. 54, pp. 4489 – 4502.

    Article  Google Scholar 

  21. 21.

    S. Mandal, K.G. Pradeep, S. Zaefferer, and D. Raabe: Scripta Mater., 2014, vol. 81, pp. 16-19.

    Article  Google Scholar 

  22. 22.

    V.Y. Gertsman, and S.M. Bruemmer: Acta Mater., 2001, vol. 49, pp. 1589- 1598.

    Article  Google Scholar 

  23. 23.

    V. Randle: Mater. Sci. Technol., 2010, vol. 26, pp. 253-261.

    Article  Google Scholar 

  24. 24.

    T. Watanabe, S. Tsurekawa, X. Zhao, and L. Zuo: Scripta Mater., 2006, vol. 54, pp. 969–975.

    Article  Google Scholar 

  25. 25.

    M. Winning: Scripta Mater., 2006, vol. 54, pp. 987–992.

    Article  Google Scholar 

  26. 26.

    S. Yang, Z.J. Wang, H. Kokawa, and Y.S. Sato: J. Mater. Sci., 2007, vol. 42, pp. 847–853.

    Article  Google Scholar 

  27. 27.

    G. Owen, and V. Randle: Scripta Mater., 2006, vol. 55, pp. 959 – 962.

    Article  Google Scholar 

  28. 28.

    S. Mandal, P.V. Sivaprasad, B. Raj, and V.S. Sarma: Metall. Mater. Trans. A., 2008, vol. 39, pp. 3298 – 3307.

    Article  Google Scholar 

  29. 29.

    B. Li, and S. Tin: Mater. Sci. Eng. A, 2014, vol. 603, pp. 104–113.

    Article  Google Scholar 

  30. 30.

    D.J. Drabble, C.M. Bishop, and M.V. Kral: Metall. Mater. Trans. A, 2011, vol. 42A, pp. 763-772.

    Article  Google Scholar 

  31. 31.

    S. Sinha, Dong-Ik Kim, E. Fleury, and S. Suwas, Mater. Sci. Eng. A, 2015, vol. 626, pp. 175 - 185.

    Article  Google Scholar 

  32. 32.

    B.M. Guyot, and N.L. Richards: J. Mater. Proces. Technol., 2007, vol. 189, pp. 162–168.

    Article  Google Scholar 

  33. 33.

    D.G. Brandon: Acta Metall., 1966, vol. 14, pp. 1479-1484.

    Article  Google Scholar 

  34. 34.

    D.M. Saylor, A. Morawiec, and G.S. Rohrer: Acta Mater., 2003, vol. 51, pp. 3663 – 3674.

    Article  Google Scholar 

  35. 35.

    D.M. Saylor, B.S. El-Dasher, B.L. Adams, and G.S. Rohrer: Metall. Mater. Trans., 2004, vol. 35A, pp. 1981–89.

    Article  Google Scholar 

  36. 36.

    D. Jorge-Badiola, A. Iza-Mendia, and I. Gutierrez: J. Microsc., 2007, vol. 228, pp. 373.

    Article  Google Scholar 

  37. 37.

    M. Kumar, W. E. King, and A.J. Schwartz: Acta Mater., 2000, vol. 48, pp. 2081-2091.

    Article  Google Scholar 

  38. 38.

    A. J. Schwartz, W. E. King, and M. Kumar: Scripta Mater., 2006, vol. 54, pp. 963–968.

    Article  Google Scholar 

  39. 39.

    L. Tan, K. Sridharan, and T.R. Allen: J. Nucl. Mater., 2007, vol. 371, pp. 171–175.

    Article  Google Scholar 

  40. 40.

    T. Liu, S. Xia, H. Li, B. Zhou, and Q. Bai: Mater. Charec., 2014, vol. 91, pp. 89-100.

    Article  Google Scholar 

  41. 41.

    V. Randle, and M. Coleman: Acta Mater., 2009, vol. 57, pp. 3410–3421.

    Article  Google Scholar 

  42. 42.

    S. Mandal, A.K. Bhaduri, and V.S. Sarma: Mater. Sci. Forum, 2012, vol. 702-703, pp. 714-717.

    Google Scholar 

  43. 43.

    X. Fang, W. Wang, Z. Cai, C. Qin, and B. Zhou: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1571–157.

    Article  Google Scholar 

  44. 44.

    L.C. Lim, and R. Raj: Acta Metall., 1984, vol. 32, pp. 1177–81.

    Article  Google Scholar 

  45. 45.

    V. Randle: Acta Mater., 2004, vol. 52, pp. 4067–4081.

    Article  Google Scholar 

  46. 46.

    S. Mandal, A.K. Bhaduri, and V.S. Sarma: Mater. Sci. Eng. A, 2009, vol. 515, pp. 134 – 140.

    Article  Google Scholar 

  47. 47.

    H. Gleiter: Acta Metall., 1969, vol. 17, pp. 1421 – 1428.

    Article  Google Scholar 

  48. 48.

    W. Wang, and H. Guo: Mater. Sci. Eng. A, 2007, vol. 445–446, pp. 155 – 162.

    Article  Google Scholar 

  49. 49.

    V. Randle, and H. Davies: Metall. Mater. Trans. A, 2002, vol. 33, pp. 1853.

    Article  Google Scholar 

  50. 50.

    A.H. King: Scripta Metall., 1985, vol. 19, pp. 1517-1520.

    Article  Google Scholar 

  51. 51.

    S. Mahajan, C.S. Pande, M.A. Imam, and B.B. Rath: Acta Mater., 1997, vol. 45, pp. 2633–2638.

    Article  Google Scholar 

  52. 52.

    V. Randle, P.R. Rios, and Y. Hu: Scripta Mater., 2008, vol. 58, pp. 130–133.

    Article  Google Scholar 

  53. 53.

    X.P. Chen, L.F. Li, H.F. Sun, L.X. Wang, and Q. Liu: Mater. Sci. Eng. A, 2015, vol. 622, pp. 108-113.

    Article  Google Scholar 

  54. 54.

    K.L. Merkle, and D. Wolf: Philos. Mag., 1992, vol. 65A, pp. 513.

    Article  Google Scholar 

  55. 55.

    V. Randle, G.S. Rohrer, H.M. Miller, M. Coleman, and G.T. Owen, Acta Mater., 2008, vol. 56, pp. 2363–2373.

    Article  Google Scholar 

  56. 56.

    V.Y. Gertsman, and K. Tangri: Philos. Mag. A, 1991, vol. 64, pp. 1319 – 1330.

    Article  Google Scholar 

  57. 57.

    V. Randle, and R. Jones: Mater. Sci. Eng. A, 2009, vol. 524, pp. 134 – 142.

    Article  Google Scholar 

  58. 58.

    M. Michiuchi, H. Kokawa, Z.J. Wang, Y.S. Sato, and K. Sakai: Acta Mater., 2006, vol. 54, pp. 5179-5184.

    Article  Google Scholar 

  59. 59.

    M. Frary, and C.A. Schuh: Philos. Mag., 2005, vol. 85, pp. 1123 -1143.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Subramanya Sarma Vadlamani.

Additional information

Manuscript submitted March 4, 2015.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Katnagallu, S.S., Mandal, S., Cheekur Nagaraja, A. et al. Role of Carbide Precipitates and Process Parameters on Achieving Grain Boundary Engineered Microstructure in a Ni-Based Superalloy. Metall Mater Trans A 46, 4740–4754 (2015). https://doi.org/10.1007/s11661-015-3064-4

Download citation

Keywords

  • Coincidence Site Lattice Boundary
  • Grain Boundary Character Distribution
  • Kernel Average Misorientation
  • Grain Boundary Engineering