Skip to main content
Log in

Dispersoid Distribution and Microstructure in Fe-Cr-Al Ferritic Oxide Dispersion-Strengthened Alloy Prepared by Friction Consolidation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

INCOLOY® MA956 is a ferritic oxide dispersion-strengthened alloy manufactured by mechanical alloying followed by hot extrusion in vacuum-sealed cans or by degassing and hot isostatic pressing. This could be followed by a tailored heat treatment sequence in order to obtain a desired microstructure and to allow the oxide dispersion to precipitate. Three different oxides, responsible for the high-temperature mechanical strength, have been observed in this alloy: Y4Al2O9, YAlO3, and Y3Al5O12. Their sizes range from just a few to hundreds of nanometers. In this work, mechanically alloyed MA956 powder was consolidated via friction consolidation, a single-step and potentially cheaper processing alternative. Three fully dense compacts were produced. The compacts exhibited a refined, equiaxed grain structure with grain sizes smaller than 10 µm and the desired oxide dispersion. YAlO3 and Y3Al5O12 were identified by scanning electron microscopy, energy-dispersive X-ray spectroscopy (EDS), and X-ray diffraction. The size distribution of precipitates above 50 nm showed a direct proportionality between average precipitate size and grain size. The total energy input during processing was correlated with the relative amount of each of the oxides in the disks: the higher the total processing energy input, the higher the relative amount of Y3Al5O12 precipitates. The elemental composition of the oxide precipitates was also probed individually by EDS, showing an aluminum enrichment trend as precipitates grew in size.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. E. Ma, M. Atzmon, and F.E. Pinkerton: J. Appl. Phys., 1993, vol. 74, pp. 955–62.

    Article  Google Scholar 

  2. Y. Kimura, S. Takaki, S. Suejima, R. Uemori, and H. Tamehiro: ISIJ Int., 1999, vol. 39, pp. 176–82.

    Article  Google Scholar 

  3. T. Okuda, and M. Fujiwara: J. Mater. Sci. Lett., 1995, vol. 14, pp. 1600–03.

    Article  Google Scholar 

  4. M.J. Alinger, G.R. Odette, and D.T. Hoelzer: Acta Materialia, 2009, vol. 57, pp. 392–406.

    Article  Google Scholar 

  5. D. Catalini, D. Kaoumi, A.P. Reynolds, and G.J. Grant: J. Nucl. Mater., 2013, vol. 442, pp. S112–8.

    Article  Google Scholar 

  6. M.F. Hupalo, M. Terada, A.M. Kliauga, and A.F. Padilha: Materialwiss Werkst, 2003, vol. 34, pp. 505–08.

    Article  Google Scholar 

  7. P. Krautwasser, A. Czyrska-Filemonowicz, M. Widera, and F. Carsughi: Mater. Sci. Eng. A, 1994, vol. 177, pp. 199–208.

    Article  Google Scholar 

  8. A. Czyrska-Filemonowicz, and B. Dubiel: J. Mater. Process. Tech., 1997, vol. 64, pp. 53–64.

    Article  Google Scholar 

  9. L.L. Hsiung, M.J. Fluss, S.J. Tumey, B.W. Choi, Y. Serruys, F. Willaime, and A. Kimura: Phys. Rev. B, 2010, vol. 82, p. 184103.

    Article  Google Scholar 

  10. J.S. Benjamin: Metal Powder Rep., 1990, vol. 45, pp. 122–27.

    Article  Google Scholar 

  11. C. Capdevila, and H.K.D.H. Bhadeshia: Adv. Eng. Mater., 2001, vol. 3, pp. 647–56.

    Article  Google Scholar 

  12. S. Ukai, T. Nishida, H. Okada, T. Okuda, M. Fujiwara, and K. Asabe: J. Nucl. Sci. Technol., 1997, vol. 34, pp. 256–63.

    Article  Google Scholar 

  13. S. Ukai, T. Nishida, T. Okuda, and T. Yoshitake: J. Nucl. Sci. Technol., 1998, vol. 35, pp. 294–300.

    Article  Google Scholar 

  14. G.J. Grant, J. Darsell, A.P. Reynolds, D. Catalini, and D. Kaoumi: The 26th Annual Conference on Fossil Energy Materials, U.S. Department of Energy—NETL, Pittsburgh, PA, 2012.

  15. J.T. Busby: J. Nucl. Mater., 2009, vol. 392, pp. 301–06.

    Article  Google Scholar 

  16. W. Tang, and A.P. Reynolds: In Friction Stir Welding and Processing VI, Wiley, Hoboken, NJ, 2011, pp. 289–98.

    Book  Google Scholar 

  17. H. Zhang, X. Li, W. Tang, X. Deng, A.P. Reynolds, and M.A. Sutton: J. Mater. Process. Tech. 2015, vol. 221, pp. 21–30.

    Article  Google Scholar 

  18. H. Zhang, X. Zhao, X. Deng, M.A. Sutton, A.P. Reynolds, S.R. McNeill, and X. Ke: Int. J. Mech. Sci., 2014, vol. 85, pp. 130–41.

    Article  Google Scholar 

  19. X. Zhao, M. A. Sutton, H. Zhang, X. Deng, A.P. Reynolds, X. Ke, and H.W. Schreier: Exp. Mech., 2015, vol. 55, pp. 177–200.

    Article  Google Scholar 

  20. W. Tang, and A.P. Reynolds: J. Mater. Process. Tech., 2010, vol. 210, pp. 2231–37.

    Article  Google Scholar 

  21. X. Li, W. Tang, and A.P. Reynolds: In Friction Stir Welding and Processing VII, Wiley, Hoboken, 2013, pp. 339–47.

  22. ASTM, E3-01 Standard Practice for preparation of metallographic specimens, ASTM International, Place published, 2001.

  23. Z. Yao, S. Xu, M L. Jenkins, and M.A. Kirk: J. Electron Microsc., 2008, vol. 57, pp. 91–4.

    Article  Google Scholar 

  24. K.E. Burke: Metallography, 1975, vol. 8, pp. 473–88.

    Article  Google Scholar 

  25. International Centre for Diffraction Data: Quantitative Analysis—Reference Intensity Ratio (RIR), http://www.icdd.com/resources/tutorials/pdf/Quantitative%20Analysis%20RIR.pdf. Accessed 3 Jun 2015.

  26. D. Catalini, D. Kaoumi, A.P. Reynolds, and G.J. Grant: Trans. Am. Nucl. Soc., 2012, vol. 107, p. 458.

    Google Scholar 

  27. M.Z.H. Khandkar, J.A. Khan, and A.P. Reynolds: Sci Technol Weld Join., 2003, vol. 8, pp. 165–174.

    Article  Google Scholar 

  28. B.W. Baker, E.S.K. Menon, T.R. McNelley, L.N. Brewer, B. El-Dasher, J.C. Farmer, S.G. Torres, M.W. Mahoney, and S. Sanderson: Metall. Mater. Trans. E, 2014, vol. 1E, pp. 318–30.

  29. M. West, B. Jasthi, P. Hosemann, and V. Sodesetti: Friction Stir Welding and Processing VI, TMS, Warrendale, PA, 2011, pp. 33–40.

  30. E. Salahinejad, R. Amini, E.A. Bajestani, and M.J. Hadianfard: J. Alloys Compd., 2010, vol. 497, pp. 369–72.

    Article  Google Scholar 

  31. B.W. Baker, T.R. McNelley, and L.N. Brewer: Mater. Sci. Eng. A, 2014, vol. 589, pp. 217–27.

    Article  Google Scholar 

  32. G.J. Grant, J. Darsell, D. Catalini, and A.P. Reynolds: 2014 NETL Crosscutting Research Review Meeting, U.S. Department of Energy—NETL, Pittsburgh, PA, 2014.

  33. V.B. Glushkova, V.A. Krzhizhanovskaya, O.N. Egorova, Y.P. Udalov, and L.P. Kachalova: Neorganicheskie Marerialy, 1983, vol. 19, pp. 95–99.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Djamel Kaoumi.

Additional information

Manuscript submitted December 12, 2012.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Catalini, D., Kaoumi, D., Reynolds, A.P. et al. Dispersoid Distribution and Microstructure in Fe-Cr-Al Ferritic Oxide Dispersion-Strengthened Alloy Prepared by Friction Consolidation. Metall Mater Trans A 46, 4730–4739 (2015). https://doi.org/10.1007/s11661-015-3059-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3059-1

Keywords

Navigation