Skip to main content
Log in

Structure, Magnetic, and Electrical Properties of Heusler-Type Fe3−x Co x Si Ferromagnetic Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effect of substitution of Co for Fe on structure, magnetic, and electrical resistivity of Heusler-type Fe3−x Co x Si (0 ≤ x ≤ 1) alloys was investigated using X-ray powder diffraction, 57Fe Mössbauer spectroscopy, magnetic, and electrical transport measurements. The results revealed that these alloys consist of ordered DO3 phase and some L21 phase up to x ≤ 0.5. However, for x > 0.5, the alloys consisted of L21 ordered phase and B2 disordered phase. The magnetization value was close to that predicted from Slater-Pauling rule for x ≥ 0.5 alloys. The Curie temperature increased from 832 K (559 °C) for x = 0 (Fe3Si) alloy to 1016 K (743 °C) for x = 1 (Fe2CoSi) alloy. Electrical transport studies revealed the presence of half-metallic behavior at low temperatures in x ≥ 0.5 alloys. No half-metallic behavior was observed for x = 0 and 0.25 alloys; however, a high resistivity with ferromagnetism was observed in these alloys, which is desirable for ferromagnetic metal/semiconductor spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. V. Franco, J. S. Blazquez, B. Ingale and A. Conde, Ann. Rev. Mat. Res., 42 (2012) 305–342.

    Article  Google Scholar 

  2. P. Entel, V. D. Buchelnikov, V. V. Khovailo, A. T. Zayak, W. A. Adeagbo, M. E. Gruner, H. C. Herper and E. F. Wassermann, J. Phys. D: Appl. Phys., 39 (2006) 865–870.

    Article  Google Scholar 

  3. S. Y. Yu, Z. H Liu, G. D. Liu, J. L. Chen, Z. X. Cao, G. H. Wu, B. Zhang and X. X. Zhang, Appl. Phys. Lett., 89 (2006) 162503–162505.

    Article  Google Scholar 

  4. S. E. Muthu, N. V. Rama Rao, D.V. Sridhara Rao, M. Manivel Raja, U. Devarajan and S. Arumugam, J. Appl. Phys., 110 (2011) 023904–023908.

    Article  Google Scholar 

  5. T. Krenke, E. Duman, M. Acet, E. F. Wassermann, X. Moya, L. Manosa, A. Planes, E. Suard and B. Ouladdiaf, Phys. Rev. B, 75 (2007) 104414–104419.

    Article  Google Scholar 

  6. B. Zhang, X. X. Zhang, S. Y. Yu, J. L. Chen, Z. X. Cao and G. H. Wu, Appl. Phys. Lett., 91 (2007) 012510–012512.

    Article  Google Scholar 

  7. R. A. de Groot, F. M. Müller, P. G. van Engen and K. H. J. Buschow, Phys. Rev. Lett., 50 (1983) 2024–2027.

    Article  Google Scholar 

  8. M. Julliere, Phys. Lett., 54A (1975) 225–226.

    Article  Google Scholar 

  9. J.S Moodera, L.R Kinder, T.M Wong and R. Meservey, Phy. Rev. Lett. 74 (1995) 3273–3276.

    Article  Google Scholar 

  10. S. Wurmehl, G. H. Fecher, H. C. Kandpal, V. Ksenofontov, C. Felser, H. J. Lin and J. Morais, Phys. Rev. B 72 (2005) 184434–184439.

    Article  Google Scholar 

  11. V. Niculescu, T.J. Burch, K. Raj and J.I. Budnik, J. Magn. Magn. Mater., 5 (1977) 60–66.

    Article  Google Scholar 

  12. G. Schmidt, L.W. Molenkamp, Semicond. Sci. Technol., 17 (2002) 310–321.

    Article  Google Scholar 

  13. Ionescu A, Vaz CAF, Trypiniotis T, Gurtler CM, Vickers ME, Garcia-Miquel H, Bland JAC (2005) J. Mag. Mag. Mater. 286:72–75.

    Article  Google Scholar 

  14. R.J. Soulen Jr., J.M. Byers, M.S. Osofsky, B. Nadgorny, T. Ambrose, S.F. Cheng, P.R. Broussard, C.T. Tanaka, J. Nowak, J.S. Moodera, A. Barry, J.M.D. Coey, Science, 282 (1998) 85–88.

    Article  Google Scholar 

  15. A. Osawa, T. Murata, Nippon Kinzoku Gakkai-Shi, 4 (1940) 228–242.

    Google Scholar 

  16. K. Srinivas, T. Prasanna Kumari, M. Manivel Raja and S. V. Kamat, J. Appl. Phys., 114 (2013) 033911–033919.

    Article  Google Scholar 

  17. E.G. Moroni, W. Wolf, J. Hafner and R. Podloucky, Phys. Rev., B 59 (1999) 12860–12864.

    Article  Google Scholar 

  18. G.D. Liu, X.F. Dai, S.Y. Yu, Z.Y. Zhu, J.L. Chen, G.H. Wu, H. Zhu and J.Q. Xiao, Phys. Rev. B, 74 (2006) 054435–054439.

    Article  Google Scholar 

  19. G. Rixecker, P. Schaaf and U. Gonser, Phys. Stat. Sol. A139, (1993) 309–320.

    Article  Google Scholar 

  20. Y. Amako, Y. Taniguchi, K. Magatani, D. Kikuchi, M. Nakashima, T. Kanomata, J. Alloys and Compds, 488 (2009) 243–245.

    Article  Google Scholar 

  21. E. Clifford, M. Venkatesan, R. Gunning and J.M.D. Coey, Solid State Commun., 131 (2004) 61–64.

    Article  Google Scholar 

  22. N.E Christensen, J. Kudrnovsky, C.O. Roddriguez, Int. J. Mater. Sci. Simu., 1 (2007) 1–15.

    Article  Google Scholar 

  23. Rama Rao NV, Gopalan R, Manivel Raja M, Chandrasekaran V, Suresh KG (2008). Appl. Phys. Lett. 93:202503–202505.

    Article  Google Scholar 

  24. K. H. J. Buschow, P. G. van Engen and R. Jongebreur, J. Magn. Magn. Mater., 38 (1983) 1–22.

    Article  Google Scholar 

  25. M. Vanakatesan: in Handbook of Magnetism and Advanced Magnetic Materials, H. Kronmueller and S. Parkin, eds., Wiley, Chichester, England, 2007, vol. 4.

  26. M. P. Raphael, B. Ravel, M. A. Willard, S. F. Cheng, B. N. Das, R. M. Stroud, K. M. Bussmann, J. H. Claassen and V. G. Harris, Appl. Phys. Lett. 79 (2001) 4396–4398.

    Article  Google Scholar 

  27. I. Galanakis, P. Mavropoulos and P. H. Dederichs, J. Phys. D: Appl. Phys. 39 (2006) 765–775.

    Article  Google Scholar 

  28. L. J. Singh, Z. H. Barber, Y. Miyoshi, W.R. Branford and L. F. Cohen, J. Appl. Phys. 95 (2004) 7231–7233.

    Article  Google Scholar 

  29. L. J. Singh, Z. H. Barber, Y. Miyoshi, W.R. Branford, Y. Miyoshi and L. F. Cohen J. Appl. Phys. 95(2004) 8063–8068.

    Article  Google Scholar 

  30. M. P. Raphael, B. Ravel, Q. Huang, M. A. Willard, S. F. Cheng, B. N. Das, R. M. Stroud, K. M. Bussmann, J. H. Claassen, and V. G. Harris, Phys.Rev. B, 66 (2002) 104429–104433.

    Article  Google Scholar 

  31. V. Y. Irkhin and M. I. Katsnelson J. Phys.: Condens. Matter, 2 (1990) 7151–7171.

    Google Scholar 

  32. Blum CGF, Jenkins CA, Barth J, Felser C, Wurmehl S, Friemel G, Hess C, Behr G, Büchner B, Reller A, Riegg S, Ebbinghaus SG, Ellis T, Jacobs PJ, Kohlhepp JT, and Swagten HJM (2009). Appl. Phys. Lett. 95:161903–161905.

    Article  Google Scholar 

  33. Lakhan Bainsla, K. G. Suresh, A. K. Nigam, M. Manivel Raja, B. S. D. Ch. S. Varaprasad, Y. K. Takahashi, and K. Hono, J. Appl. Phys., 116 (2014) 203902–203907.

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Director, Defence Metallurgical Research Laboratory, Hyderabad for his constant encouragement and the Defence Research and Development Organization for the financial support. The authors also thank Prof. S. Arumugam, Centre for High Pressure Research, School of Physics, Bharathidasan University, Trichy, India for electrical resistivity measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Manivel Raja.

Additional information

Manuscript submitted March 18, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raja, M.M., Kamat, S.V. Structure, Magnetic, and Electrical Properties of Heusler-Type Fe3−x Co x Si Ferromagnetic Alloys. Metall Mater Trans A 46, 4688–4697 (2015). https://doi.org/10.1007/s11661-015-3054-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3054-6

Keywords

Navigation