Metallurgical and Materials Transactions A

, Volume 46, Issue 9, pp 4078–4085 | Cite as

Effect of Temperature on the Nano/Microstructure and Mechanical Behavior of Nanotwinned Ag Films

  • Huan Zhang
  • Jie Geng
  • Ryan T. Ott
  • Matthew F. Besser
  • Matthew J. Kramer


In situ and ex situ annealed nanotwinned (NT) Ag thin films have been investigated by TEM and tensile testing to reveal the thermal stability of the twin boundaries, grain boundaries, dislocation densities, and their respective influence of the macroscopic yield stress. The NT Ag films synthesized by magnetron sputtering form both coherent (CTB, Σ3{111}) and incoherent (ITB, Σ3{112}) twin boundaries that are thermally stable up to 473 K (200 °C), i.e., no obvious changes in grain size, twin spacing, and yield stress. In situ TEM observations show the dislocations become mobile at 453 K (180 °C) resulting in dislocation annihilation primarily at twin and grain boundaries. Rotation of grains with low-angle grain boundaries was observed during in situ heating, resulting in the growth of columnar grains above 453 K (180 °C). However, no noticeable changes in the spacings of CTBs were observed during the entire in situ and the ex situ annealing [up to 873 K (600 °C)]. The increase in grain size and concomitant decrease in yield stress following annealing at various temperatures can be described by the Hall-Petch relationship, demonstrating that grain size rather than twin spacing is most sensitive to thermal annealing and plays a dominant role in the deformation of NT Ag films.


Dislocation Density Grain Boundary Twin Boundary Twin Plane Tensile Yield Stress 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. The research was performed at the Ames Laboratory, which is operated for the U.S. DOE by Iowa State University under contract # DE-AC02-07CH11358.


  1. 1.
    Lu, L.; Shen, Y. F.; Chen, X. H.; Qian, L. H.; Lu, K. Science 2004, 304, (5669), 422-426.CrossRefGoogle Scholar
  2. 2.
    Zhang, X.; Misra, A.; Wang, H.; Shen, T. D.; Nastasi, M.; Mitchell, T. E.; Hirth, J. P.; Hoagland, R. G.; Embury, J. D. Acta Mater 2004, 52, (4), 995-1002.CrossRefGoogle Scholar
  3. 3.
    Anderoglu O, Misra A, Wang H, Ronning F, Hundley MF, Zhang X (2008) Appl Phys Lett 93:083108CrossRefGoogle Scholar
  4. 4.
    Bufford, D.; Wang, H. Y.; Zhang, X. H. J Mater Res 2013, 28, (13), 1729-1739.CrossRefGoogle Scholar
  5. 5.
    Qin, E. W.; Lu, L.; Tao, N. R.; Tan, J.; Lu, K. Acta Mater 2009, 57, (20), 6215-6225.CrossRefGoogle Scholar
  6. 6.
    Yu, Q.; Qi, L.; Chen, K.; Mishra, R. K.; Li, J.; Minor, A. M. Nano Lett 2012, 12, (2), 887-892.CrossRefGoogle Scholar
  7. 7.
    Saldana C, King A. H, Stach E. A, Compton W. D, Chandrasekar S (2011) Appl Phys Lett 99:231911.CrossRefGoogle Scholar
  8. 8.
    Ma, E.; Wang, Y. M.; Lu, Q. H.; Sui, M. L.; Lu, L.; Lu, K. Appl Phys Lett 2004, 85, (21), 4932-4934.CrossRefGoogle Scholar
  9. 9.
    Zhang, X.; Misra, A.; Wang, H.; Nastasi, M.; Embury, J. D.; Mitchell, T. E.; Hoagland, R. G.; Hirth, J. P. Appl Phys Lett 2004, 84, (7), 1096-1098.CrossRefGoogle Scholar
  10. 10.
    Hodge, A. M.; Wang, Y. M.; Barbee, T. W. Mat Sci Eng a-Struct 2006, 429, (1-2), 272-276.CrossRefGoogle Scholar
  11. 11.
    Huang, Y. S.; Liu, C. M.; Chiu, W. L.; Chen, C. Scripta Mater 2014, 89, 5-8.CrossRefGoogle Scholar
  12. 12.
    Lu, L.; Chen, X.; Huang, X.; Lu, K. Science 2009, 323, (5914), 607-610.CrossRefGoogle Scholar
  13. 13.
    Lu, K.; Lu, L.; Suresh, S. Science 2009, 324, (5925), 349-352.CrossRefGoogle Scholar
  14. 14.
    Raeisinia, B.; Sinclair, C. W. Mat Sci Eng a-Struct 2009, 525, (1-2), 78-82.CrossRefGoogle Scholar
  15. 15.
    Anderoglu O, Misra A, Wang H, Zhang X (2008) J Appl Phys 103:094322.CrossRefGoogle Scholar
  16. 16.
    Sinha T, Kulkarni Y. J (2011) Appl Phys 109:114315.CrossRefGoogle Scholar
  17. 17.
    Zhang, X.; Misra, A. Scripta Mater 2012, 66, (11), 860-865.CrossRefGoogle Scholar
  18. 18.
    Wang Y. B, Sui M. L. (2009) Appl Phys Lett 94:021909.CrossRefGoogle Scholar
  19. 19.
    Li, N.; Wang, J.; Zhang, X.; Misra, A. Jom-Us 2011, 63, (9), 62-U62.CrossRefGoogle Scholar
  20. 20.
    Zhang, X. Y.; Tu, J.; Liu, Q. Scripta Mater 2012, 67, (12), 991-994.CrossRefGoogle Scholar
  21. 21.
    E. Orowan: 1948, Institute of Metals, London.Google Scholar
  22. 22.
    Vaz, M. F.: Fortes, M. A. Scripta Metall Mater 1988, 22, (1), 35-40.CrossRefGoogle Scholar
  23. 23.
    Harris, K. E.; Singh, V. V.; King, A. H. Acta Mater 1998, 46, (8), 2623-2633.CrossRefGoogle Scholar
  24. 24.
    Furnish T. A, Hodge A. M. (2014) Apl Mater 2:046112.CrossRefGoogle Scholar
  25. 25.
    Wang J, Anderoglu O, Hirth J. P, Misra A, Zhang X (2009) Appl Phys Lett 95: 021908.CrossRefGoogle Scholar
  26. 26.
    Hirth J. P, Lothe J, in Theory of Dislocations (McGraw-Hill Book Co., New York, NY, 1967), pp. 156–89.Google Scholar
  27. 27.
    Singh, V.; King, A. H. Mat Res S C 1997, 458, 301-306.CrossRefGoogle Scholar
  28. 28.
    Zhu, Y. T.; Liao, X. Z.; Wu, X. L. Prog Mater Sci 2012, 57, (1), 1-62.CrossRefGoogle Scholar
  29. 29.
    Meyers, M. A.; Vohringer, O.; Lubarda, V. A. Acta Mater 2001, 49, (19), 4025-4039.CrossRefGoogle Scholar
  30. 30.
    Meyers, M. A.; Andrade, U. R.; Chokshi, A. H. Metall Mater Trans A 1995, 26, (11), 2881-2893.CrossRefGoogle Scholar
  31. 31.
    Cao, Y. F.; Allameh, S.; Nankivil, D.; Sathiaraj, T. S.; Otiti, T.; Soboyejo, W. Mat Sci Eng a-Struct 2008, 494, (1-2), 466-466.CrossRefGoogle Scholar
  32. 32.
    Hirth, J. P. Metall Trans A 1985, 16, (12), 2085-2090.CrossRefGoogle Scholar
  33. 33.
    Queyreau, S.; Monnet, G.; Devincre, B. Acta Mater 2010, 58, (17), 5586-5595.CrossRefGoogle Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2015

Authors and Affiliations

  • Huan Zhang
    • 1
  • Jie Geng
    • 1
  • Ryan T. Ott
    • 1
  • Matthew F. Besser
    • 1
  • Matthew J. Kramer
    • 1
  1. 1.Division of Materials Sciences and Engineering, Ames LaboratoryIowa State UniversityAmesUSA

Personalised recommendations