Skip to main content

Advertisement

Log in

Multidimensional Study on Spall Behavior of High-Purity Copper Under Sliding Detonation

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The spall behaviors of high-purity copper samples with different heat treatment histories were investigated using optical microscopy and X-ray computer tomography (XRCT). The spall samples were obtained by sliding detonation experiments at low pressures (2 to 4 GPa). It was found that the spall planes created by sliding detonation in this experiment are similar to the spall planes created by plate impact test, except for more secondary damage residual around the main spall plane. The results of damage degree, the shape, and the distributions of voids obtained by the means of metallography (2D) and XRCT (3D) statistics were consistent. For similar microstructure, the maximum damage degree and damage zone width increase with increasing shock stress. Whereas the ranges of voids distribution parallel to the shock stress direction decreases with the increasing of shock stress. For the shock stress is similar, the shape of voids in annealed samples are closed to spheres, their mean flatness is 0.51. The voids in samples with thermo-mechanical treatment histories are sheet like with mean flatness 0.16. The difference in grain size (40 and 9 μm) may be the main reason of such difference.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. D. R. Curran, L. Seaman, and D.A. Shockey: Phys. Rep., 1897, vol. 147, pp. 253–388.

    Article  Google Scholar 

  2. M.A. Meyers: Dynamic Behavior of Materials, Wiley, New York, 1994.

    Book  Google Scholar 

  3. T.H. Antoun, L. Seaman, D.R. Curran., et al: Spall fracture [M], Springer, New York, 2003.

    Google Scholar 

  4. N. A. Pedrazas, D.L. Worthington: Materials Science and Engineering A, 2012, vol. 536, pp. 117– 123.

    Article  Google Scholar 

  5. C.S. Montross, T. Wei: International Journal of Fatigue.2002, vol. 24, pp. 1021–1036.

    Article  Google Scholar 

  6. Y. G. Wang, M. L. Qi: Mechanics of Materials, 2014, vol. 69, pp. 270–279.

    Article  Google Scholar 

  7. J. P. Escobedo, D. Dennis-Koller, E.K. Cerreta: J. Appl. Phys., 2011, vol. 110, p.033513.

    Article  Google Scholar 

  8. J. P. Escobedo, E.K. Cerreta, D. Dennis-Koller: EPJ Web of Conferences, 2012, vol. 26, p. 02008.

    Article  Google Scholar 

  9. S. J. Fensin, J.P. Escobedo: Acta Materialia, 2014, vol. 64, pp. 113–122.

    Article  Google Scholar 

  10. S. N. Luo, T. C. Germann, and D. L. Tonks: J. Appl. Phys, 2009, vol. 106, p. 123518.

    Article  Google Scholar 

  11. A. Brown, K. Krishnan, L. Wayne, P. Peralta, S.N. Luo, D. Byler, and B. Patterson: ASME IMECE, San Diego, CA, 2013, p. 65642.

  12. M. L. Qi, B. X. Bie: AIP Advances, 2014, vol. 4, p. 077118.

    Article  Google Scholar 

  13. S. A. McDonald, M. Cotton: Journal of Physics: Conference Series500, 2014, p. 112045.

    Article  Google Scholar 

  14. B.M. Patterson, J.P. Escobedo: Microsc Microanal, 2012, vol. 18, pp. 390–98.

    Article  Google Scholar 

  15. C. Gupta, H. Toda: Materials Science & Engineering A, 2013, vol. 564, pp. 525–538.

    Article  Google Scholar 

  16. H. Toda and H. Oogo: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 765–76.

    Article  Google Scholar 

  17. Isaac, F. Sket,: Materials Science and Engineering A, 2008, vol. 478, pp. 108–118.

    Article  Google Scholar 

  18. E. Maire, O. Bouaziz: Acta Materialia, 2008, vol. 56, pp. 4954–4964.

    Article  Google Scholar 

  19. O.B. Drennov and A.L. Mikhailov: Combust. Expl., Shock Waves, 1979, vol. 15, pp.539–542.

    Article  Google Scholar 

  20. R.S. Hixson and G.T. Gray: AIP Conf. Proc., 2004, vol. 706.

  21. D. D. Koller, R. S. Hixson: J. Appl. Phys., 2005, vol. 98, p. 103518.

    Article  Google Scholar 

  22. G.T. Gray III, N K Bourne: Journal of Physics: Conference Series, 500, 2014, p. 112031.

    Article  Google Scholar 

  23. R.W. Minich and J.U. Cazamias: Metall. Mater. Trans. A, 2004, vol. 35A, pp. 2663-73.

    Article  Google Scholar 

  24. Meilan Qi, Chao Luo: Journal of Applied Physics, 2012, vol. 111, p.043506.

    Article  Google Scholar 

  25. A.D. Brown and L. Wayne: Unpublished research, 2014.

  26. A. L. Stevens, L. Davidson: Appl. Phys., 1972, vol. 43, pp. 4922–27.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the NSAF (No. U1330126), National Natural Science Foundation of China (No. 51274245), the PhD. Programs Foundation of Ministry of Education of China (No. 20120162130006), the Hunan Provincial Natural Science Foundation of China (No. 14JJ2011), and the Key Project of State Key Laboratory of Explosion Science and Technology (No. KFJJ11-1), Independent Exploration Innovate Foundation of Central South University (2013zzts186), Undergraduate Innovation Training Program of Central South University (CL14009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiqiang Peng.

Additional information

Manuscript submitted February 23, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Y., Peng, Z., Guo, Z. et al. Multidimensional Study on Spall Behavior of High-Purity Copper Under Sliding Detonation. Metall Mater Trans A 46, 4070–4077 (2015). https://doi.org/10.1007/s11661-015-3027-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3027-9

Keywords

Navigation