Skip to main content
Log in

A Simplified Approach for Developing Constitutive Equations for Modeling and Prediction of Hot Deformation Flow Stress

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

A comparative study was carried out on the appropriateness of hyperbolic sine, power, and exponential descriptions of Zener–Hollomon parameter (Z) in prediction of high-temperature flow stress by consideration of the effect of strain. It was shown that the main problem of the conventional strain compensation approach is the implementation of the constitutive equations to find the strain-dependent material constants, especially the hot deformation activation energy (Q), at constant strain values, which arises from the change in the microstructure of the material at a given strain for different deformation conditions (different Z values). Subsequently, a simplified approach for each constitutive equation, mainly by taking Q from the peak stress analysis, was proposed to solve this issue. This also resulted in significantly better prediction abilities for unseen deformation conditions and effectively simplified the required calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas: Prog. Mater. Sci., 2014, vol. 60, pp. 130-207.

    Article  Google Scholar 

  2. H. Mirzadeh and A. Najafizadeh: ISIJ Int., 2013, vol. 53, pp. 680-89.

    Article  Google Scholar 

  3. R.D. Doherty, D.A. Hughes, F.J. Humphreys, J.J. Jonas, D. Juul Jensen, M.E. Kassner, W.E. King, T.R. McNelley, H.J. McQueen, and A.D. Rollett: Mater. Sci. Eng. A, 1997, vol. 238, pp. 219-74.

    Article  Google Scholar 

  4. H. Mirzadeh, J.M. Cabrera, and A. Najafizadeh: Acta Mater., 2011, vol. 59, pp. 6441-48.

    Article  Google Scholar 

  5. H. Mirzadeh, J.M. Cabrera, and A. Najafizadeh: Metall. Mater. Trans. A, 2012, vol. 43, pp. 108-23.

    Article  Google Scholar 

  6. Y.C. Lin and X.M. Chen: Mater. Des., 2011, vol. 32, pp. 1733-59.

    Article  Google Scholar 

  7. R. Liang and A.S. Khan: Int. J. Plast., 1999, vol. 15, pp. 963-80.

    Article  Google Scholar 

  8. S. Nemat-Nasser, W.G. Guo, V.F. Nesterenko, S.S. Indrakanti, and Y.B. Gu: Mech. Mater., 2001, vol. 33, pp. 425-39.

    Article  Google Scholar 

  9. H. Mirzadeh: Mech. Mater., 2014, vol. 77, pp. 80-85.

    Article  Google Scholar 

  10. H. Mirzadeh: Mater. Chem. Phys., 2015, vol. 152, pp. 123-26.

    Article  Google Scholar 

  11. C.M. Sellars and W.J. McTegart: Acta Metall., 1966, vol. 14, pp. 1136-38.

    Article  Google Scholar 

  12. H. Mirzadeh: J. Magnesium Alloys, 2014, vol. 2, pp. 225-29.

    Article  Google Scholar 

  13. H. Mirzadeh: Mater. Des., 2015, vol. 65, pp. 80-82.

    Article  Google Scholar 

  14. H. Mirzadeh, M.H. Parsa, and D. Ohadi: Mater. Sci. Eng. A, 2013, vol. 569, pp. 54-60.

    Article  Google Scholar 

  15. H.J. McQueen and N.D. Ryan: Mater. Sci. Eng. A, 2002, vol. 322, pp. 43-63.

    Article  Google Scholar 

  16. H. Mirzadeh, J.M. Cabrera, J.M. Prado, and A. Najafizadeh: Mater. Sci. Eng. A, 2011, vol. 528, pp. 3876-82.

    Article  Google Scholar 

  17. H. Mirzadeh and M.H. Parsa: J. Alloys Compd., 2014, 614, 56-59.

    Article  Google Scholar 

  18. H. Mirzadeh: J. Mater. Eng. Perform., 2015, vol. 24, pp. 1095-99.

    Article  Google Scholar 

  19. H. Mirzadeh: Kovove Mater., 2015, vol. 53, pp. 105-11.

    Google Scholar 

  20. H. Mirzadeh and A. Najafizadeh: Mater. Sci. Eng. A, 2010, vol. 527, pp. 1160-64.

    Article  Google Scholar 

  21. S. Mandal, V. Rakesh, P.V. Sivaprasad, S. Venugopal, and K.V. Kasiviswanathan: Mater. Sci. Eng. A, 2009, vol. 500, pp. 114-21.

    Article  Google Scholar 

  22. Y. Han, G. Qiao, J.P. Sun, and D. Zou: Comput. Mater. Sci., 2013, vol. 67, pp. 93-103.

    Article  Google Scholar 

  23. K.P. Rao and E.B. Hawbolt: J. Eng. Mater. Technol., 1992, vol. 114, pp. 116-23.

    Article  Google Scholar 

  24. Y.C. Lin, M.S. Chen, J. Zhong: Comput. Mater. Sci., 2008, vol. 42, pp. 470-77.

    Article  Google Scholar 

  25. G. Ji, F. Li, Q. Li, H. Li, and Z. Li: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4774-82.

    Article  Google Scholar 

  26. F. Yin, L. Hua, H. Mao, and X. Han: Mater. Des., 2013, vol. 43, pp. 393-401.

    Article  Google Scholar 

  27. I. Rieiro, V. Gutiérrez, J. Castellanos, M. Carsí, M.T. Larrea, and O.A. Ruano: Metall. Mater. Trans. A, 2010, vol. 41, pp. 2396-407.

    Article  Google Scholar 

  28. D.H. Yu: Mater. Des., 2013, vol. 51, pp. 323-30.

    Article  Google Scholar 

  29. W. Li, H. Li, Z. Wang, and Z. Zheng: Mater. Sci. Eng. A, 2011, vol. 528, pp. 4098-4103.

    Article  Google Scholar 

  30. J. Li, F. Li, J. Cai, R. Wang, Z. Yuan, and G. Ji: Comput. Mater. Sci., 2013, vol. 71, pp. 56-65.

    Article  Google Scholar 

  31. J. Cai, F. Li, T. Liu, B. Chen, and M. He: Mater. Des., 2011, vol. 32, pp. 1144-51.

    Article  Google Scholar 

  32. A.A. Khamei and K. Dehghani: J. Alloys Compd., 2010, vol. 490, pp. 377-81.

    Article  Google Scholar 

  33. Z. Wang, L. Qi, J. Zhou, J. Guan, and J. Liu: Comput. Mater. Sci., 2011, vol. 50, pp. 2422-26.

    Article  Google Scholar 

  34. H. Mirzadeh and A. Najafizadeh: Mater. Des., 2010, vol. 31, pp. 1174-79.

    Article  Google Scholar 

  35. H. Mirzadeh, J.M. Cabrera, A. Najafizadeh, and P.R. Calvillo: Mater. Sci. Eng. A, 2012, vol. 538, pp. 236-45.

    Article  Google Scholar 

  36. D. Ponge and G. Gottstein: Acta Mater., 1998, vol. 46, pp. 69-80.

    Article  Google Scholar 

  37. A. Dehghan-Manshadi, M.R. Barnett, and P.D. Hodgson: Mater. Sci. Eng. A, 2008, vol. 485, pp. 664-72.

    Article  Google Scholar 

  38. H. Mirzadeh, A. Najafizadeh, and M. Moazeny: Metall. Mater. Trans. A, 2009, vol. 40, pp. 2950-58.

    Article  Google Scholar 

  39. H. Mirzadeh and A. Najafizadeh: Mater. Des., 2010, vol. 31, pp. 4577-83.

    Article  Google Scholar 

  40. G.E. Dieter: Mechanical Metallurgy, 3rd ed., McGraw-Hill, New York, 1988.

    Google Scholar 

  41. H. Mirzadeh, M. Roostaei, M.H. Parsa, R. Mahmudi: Mater. Des., 2015, vol. 68, pp. 228-31.

    Article  Google Scholar 

  42. H. Mirzadeh, A. Najafizadeh, and M. Moazeny: Mater. Sci. Technol., 2010, vol. 26, pp. 501-04.

    Article  Google Scholar 

  43. M. Zhan, Z. Chen, H. Zhang, and W. Xia: Mech. Res. Commun., 2006, vol. 33, pp. 508-14.

    Article  Google Scholar 

  44. Z. Zeng, S. Jonsson, and Y. Zhang: Mater. Sci. Eng. A, 2009, vol. 505, pp. 116-19.

    Article  Google Scholar 

  45. J.C. Shao, B.L. Xiao, Q.Z. Wang, Z.Y. Ma, Y. Liu, and K. Yang: Mater. Sci. Eng. A, 2010, vol. 527, pp. 7865-72.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Mirzadeh.

Additional information

Manuscript submitted January 28, 2015.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mirzadeh, H. A Simplified Approach for Developing Constitutive Equations for Modeling and Prediction of Hot Deformation Flow Stress. Metall Mater Trans A 46, 4027–4037 (2015). https://doi.org/10.1007/s11661-015-3006-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-3006-1

Keywords

Navigation