Skip to main content
Log in

Recent Developments in Modeling Heteroepitaxy/Heterogeneous Nucleation by Dynamical Density Functional Theory

  • Symposium: ICASP-4 (International Conference on Advanced Solidification Processing)
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Crystallization of supersaturated liquids usually starts by epitaxial growth or by heterogeneous nucleation on foreign surfaces. Herein, we review recent advances made in modeling heteroepitaxy and heterogeneous nucleation on flat/modulated surfaces and nanoparticles within the framework of a simple dynamical density functional theory, known as the phase-field crystal model. It will be shown that the contact angle and the nucleation barrier are nonmonotonous functions of the lattice mismatch between the substrate and the crystalline phase. In continuous cooling studies for substrates with lattice mismatch, we recover qualitatively the Matthews–Blakeslee mechanism of stress release via the misfit dislocations. The simulations performed for particle-induced freezing will be confronted with recent analytical results, exploring thus the validity range of the latter. It will be demonstrated that time-dependent studies are essential, as investigations based on equilibrium properties often cannot identify the preferred nucleation pathways. Modeling of these phenomena is essential for designing materials on the basis of controlled nucleation and/or nano-patterning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. K.F. Kelton and L. A. Greer: Nucleation in Condensed Matter. Pergamon Materials Series, vol. 15 (Elsevier, Amsterdam, 2010).

  2. B.A. Grzybowski, K.J.M. Bishop, C.J. Campbell, M. Fialkowski and S.K. Smoukov: Soft Matter, 2005, vol. 1, pp. 114–28, and references therein.

    Article  Google Scholar 

  3. J. Aizenberg, A. J. Black and G.M. Whitesides, Nature, 1999, vol. 398, pp. 495–98.

    Article  Google Scholar 

  4. C.X. Cui, Y.H. Chen, P. Jin, B. Xu, Y.Y. Ren, C. Zhao, and Z.G. Wang: Physica E, 2006, vol. 31, pp. 43–47.

    Article  Google Scholar 

  5. K.-H. Chen, C.-Y. Chien, W.-T. Lai, T. George, A. Scherer and P.-W. Li: Cryst. Growth Des., 2011, vol. 11, pp. 3222–6.

    Article  Google Scholar 

  6. A.J.M. Mackus, M.A. Verheijen, N. Leick, A.A. Bol and W.M.M. Kessel: Chem. Mater., 2013, vol. 25, pp. 1905–11.

    Article  Google Scholar 

  7. G.I. Tóth, J. R. Morris and L. Gránásy, Phys. Rev. Lett., 2011, vol. 106, art. no. 045701.

  8. W. Cheng, N. Park, M. T. Walter, M. Hartman, and D. Luo, Nat Nanotechnol., 2008, vol. 3, pp. 682–690.

    Article  Google Scholar 

  9. S. Auer and D. Frenkel: Phys. Rev. Lett., 2003, vol. 91, art. no. 015703.

  10. D. Winter, P. Virnau, and K. Binder: Phys. Rev. Lett., 2009, vol. 103, art. no. 225703.

  11. M. Heni and H. Löwen: J. Phys.: Condens. Matter, 2001, vol. 13, pp. 4675–96.

    Google Scholar 

  12. A. Esztermann and H. Löwen: J. Phys.: Condens. Matter, 2005, vol. 17, pp. S429–S441.

    Google Scholar 

  13. S. Toxvaerd: J. Chem. Phys., 2002, vol. 117, pp. 10303–10.

    Article  Google Scholar 

  14. E.B. Webb III, G.S. Grest and D.R. Heine: Phys. Rev. Lett., 2003, vol. 91, art. no. 236102.

  15. L. Gránásy, T. Pusztai, D. Saylor, and J.A. Warren: Phys. Rev. Lett., 2007, vol. 98, art. no. 035703.

  16. J.A. Warren, T. Pusztai, L. Környei, and L. Gránásy: Phys. Rev. B, 2009, vol. 79, art. no. 014204.

  17. S. van Teeffelen, C.N. Likos, and H. Löwen: Phys. Rev. Let., 2008, vol. 100, art. no. 108302.

  18. T. Neuhaus, M. Marechal, M. Schmiedeberg, and H. Löwen: Phys. Rev. Lett., 2013, vol. 110, art. no. 118301.

  19. A.L. Greer, A.M. Brunn, A. Tronche, P.V. Evans and D.J. Bristow: Acta Mater., 2000, vol. 48, pp. 2823–35.

    Article  Google Scholar 

  20. T.E. Quested and A. L. Greer: Acta Mater., 2005, vol. 53, pp. 2683–92.

    Article  Google Scholar 

  21. S.A. Reavley and A.L. Greer, Philos. Mag., 2008, vol. 88, pp. 561–79.

    Article  Google Scholar 

  22. K.R. Elder, M. Katakowski, M. Haataja and M. Grant: Phys. Rev. Lett., 2002, vol. 88, art. no. 245701.

  23. H. Emmerich, H. Löwen, R. Wittkowski, T. Gruhn, G.I. Tóth, G. Tegze, and L. Gránásy: Adv. Phys., 2012, vol. 61, pp. 665–743, and references therein.

    Article  Google Scholar 

  24. G.I. Tóth, G. Tegze, T. Pusztai, and L. Gránásy: Phys. Rev. Lett., 2012, vol. 108, art. no. 025502.

  25. L. Gránásy, F. Podmaniczky, G.I. Tóth, G. Tegze, and T. Pusztai: Chem. Soc. Rev, 2014, vol. 43, pp. 2159–73.

    Article  Google Scholar 

  26. Z. Fan: Proc. J. Hunt Int. Symposium, Z. Fan and I.C. Stone, eds., Brunel University Press, Uxbridge, 2001, pp 29–44.

  27. Z. Fan: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 1409–18.

    Article  Google Scholar 

  28. O. Galkin and P. Vekilov, Proc. Natl. Acad. Sci. USA, 2000, vol. 97, pp. 6277–81.

    Article  Google Scholar 

  29. P.G. Vekilov: Cryst. Growth Des., 2004, vol. 4, pp. 671–85.

    Article  Google Scholar 

  30. P.R. TenWolde and D. Frenkel: Science, 1997, vol. 277, pp. 1975–78.

    Article  Google Scholar 

  31. V. Talanquer and D.W. Oxtoby: J. Chem. Phys., 1998, vol. 109, pp. 223–7.

    Article  Google Scholar 

  32. G.I. Tóth and L. Gránásy, J. Chem. Phys., 2007, vol. 127, art. no. 074710.

  33. T. Kawasaki and H. Tanaka, Proc. Natl. Acad. Sci. USA, 2010, vol. 107, pp. 14036–41.

    Article  Google Scholar 

  34. T.H. Zhang and X.Y. Liu, J. Am. Chem. Soc., 2007, vol. 129, pp. 13520–26.

    Article  Google Scholar 

  35. H.J. Schöpe, G. Bryant, and W. van Megen: Phys. Rev. Lett., 2006, vol. 96, art. no. 175701.

  36. J.F. Lutsko and G. Nicolis, Phys. Rev. Lett., 2006, vol. 96, art. no. 046102.

  37. T. Schilling, H.J. Schöpe, M. Oettel, G. Opletal, and I. Snook: Phys. Rev. Lett., 2010, vol. 105, art. no. 025701.

  38. G.I. Tóth, T. Pusztai, G. Tegze, G. Tóth, and L. Gránásy: Phys. Rev. Lett., 2011, vol. 107, art. no. 175702.

  39. K.R. Elder, N. Provatas, J. Berry, P. Stefanovic, and M. Grant: Phys. Rev. B, 2007, vol. 75, art. no. 064107.

  40. S. van Teeffelen, R. Backofen, A. Voigt, and H. Löwen: Phys. Rev. E, 2009, vol. 79, art. no. 051404.

  41. U.M.B. Marconi and P. Tarazona; J. Chem. Phys., 1999, vol. 110, pp. 8032–44.

    Article  Google Scholar 

  42. H. Löwen; J. Phys.: Condens. Matter, 2003, vol. 15, pp. V1–V3.

    Google Scholar 

  43. A.J. Archer and M. Rauscher, J. Phys. A: Math. Gen., 2004, vol. 37, pp. 9325–33.

    Article  Google Scholar 

  44. G.I. Tóth, G. Tegze, T. Pusztai, G. Tóth, and L. Gránásy: J. Phys.: Condens. Matter, 2010, vol. 22, art. no. 364101.

  45. G. Tegze, G. Bansel, G.I. Tóth, T. Pusztai, Z. Fan, and L. Gránásy: J. Comput. Phys., 2009, vol. 228, pp. 1612–23.

    Article  Google Scholar 

  46. R. Backofen and A. Voigt: J. Phys.: Condens. Matter, 2009, vol. 21, art. no. 464109.

  47. L. Gránásy, G. Tegze, G.I. Tóth, and T. Pusztai: Philos. Mag., 2011, vol. 91, pp. 123–49.

    Article  Google Scholar 

  48. J.W. Matthews and A.E. Blakeslee: J. Cryst. Growth, 1974, vol. 27, pp. 118–25.

    Google Scholar 

  49. R.J. Asaro and W.A. Tiller: Metall. Trans., 1972, vol. 3, pp. 1789–96.

    Article  Google Scholar 

  50. K.R. Elder and M. Grant: Phys. Rev. E, 2004, vol. 70, art. no. 051605.

  51. M. Castro: Phys. Rev. B, 2003, vol. 67, art. no. 035412.

  52. R. Backofen and A. Voigt: J. Phys.: Condens. Matter., 2010, vol. 22, art. no. 364104.

  53. G. Tegze, L. Gránásy, G.I. Tóth, F. Podmaniczky, A. Jaatinen, T. Ala-Nissila, and T. Pusztai: Phys. Rev. Lett., 2009, vol. 103, art. no. 035702.

Download references

Acknowledgments

This work includes techniques developed in the framework of the EU FP7 Collaborative Project “EXOMET” (Contract No. NMP-LA-2012-280421, co-funded by ESA), and by the ESA MAP/PECS projects MAGNEPHAS III, PARSEC, and GRADECET.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to László Gránásy.

Additional information

Manuscript submitted September 18, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Podmaniczky, F., Tóth, G.I., Tegze, G. et al. Recent Developments in Modeling Heteroepitaxy/Heterogeneous Nucleation by Dynamical Density Functional Theory. Metall Mater Trans A 46, 4908–4920 (2015). https://doi.org/10.1007/s11661-015-2986-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2986-1

Keywords

Navigation