Skip to main content
Log in

Variation in the Chemical Driving Force for Intragranular Nucleation in the Multi-pass Weld Metal of Ti-Containing High-Strength Low-Alloy Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The variation of the Mn-depleted zone (MDZ) around the inclusion during multi-pass welding of Ti-containing high-strength low-alloy (HSLA) steel was investigated by taking the changes in the impact toughness and microstructure into account. As-deposited weld metal specimens were prepared by single-pass, bead-in-groove welding, and reheated weld metal specimens were obtained by a thermal simulation technique. Two types of chemical compositions were prepared, mainly by controlling the Ti content in order to form two types of phases at inclusion/matrix interface: spinel and ilmenite. When the reheating thermal cycle is applied to the as-deposited weld metal, the MDZ depth varied depending on the inclusion surface phase; this could be explained by the competition of the homogenization effect and the dissolution effect, which occurred near the inclusion/matrix interface. In order to enhance the chemical driving force for intragranular nucleation in both as-deposited weld metal and reheated weld metal, the formation of ilmenite phase is recommended.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. W.W. BoseFilho, A.L.M. Carvalho, and P. Bowen: Mater. Sci. Eng. A, 2007, vol. 460–461, pp. 436–52.

    Article  Google Scholar 

  2. W.M. Garrison, Jr. and A.L. Wojcieszynski: Mat. Sci. Eng. A-Struct., 2007, vol. 464, pp. 321-29.

    Article  Google Scholar 

  3. E. Levine and D.C. Hill: Metall. Trans. A, 1977, vol. 8A, pp. 1453-63.

    Article  Google Scholar 

  4. J.-S. Byun, J.-H. Shim, J.-Y. Suh, Y.-J. Oh, Y.W. Cho, J.-D. Shim and D.N. Lee: Mat. Sci. Eng. A-Struct., 2001, vol. 319-321, pp. 326-31.

    Article  Google Scholar 

  5. R.A. Ricks, P.R. Howell and G.S. Barritte: J. Mater. Sci., 1982, vol. 17, pp. 732-40.

    Article  Google Scholar 

  6. S. St-Laurent and G. L’Espérance: Mat. Sci. Eng. A-Struct., 1992, vol. 149, pp. 203-16.

    Article  Google Scholar 

  7. R.A. Farrar, Z. Zhang and S.R. Bannister: J. Mater. Sci., 1993, vol. 28, pp. 1385-90.

    Article  Google Scholar 

  8. T.-K. Lee, H.J. Kim, B.Y. Kang and S.K. Hwang: ISIJ Int., 2000, vol. 40, pp. 1260-68.

    Article  Google Scholar 

  9. K.-T. Park, S.W. Hwang, J.H. Ji and C.H. Lee: Met. Mater. Int., 2011, vol. 17, pp. 349-56.

    Article  Google Scholar 

  10. K. Yamamoto, T. Hasegawa and J. Takamura: ISIJ Int., 1996, vol. 36, pp. 80-86.

    Article  Google Scholar 

  11. S. Kim, Y. Kang and C. Lee: Mat. Sci. Eng. A-Struct., 2013, vol. 559, pp. 178-86.

    Article  Google Scholar 

  12. J.M. Gregg and H.K.D.H. Bhadeshia: Metall. Mater. Trans. A, 1994, vol. 25A, pp. 1603-11.

    Article  Google Scholar 

  13. Ø. Grong, A.O. Kluken, H.K. Nylund, A.L. Dons and J. Hjelen: Metall. Mater. Trans. A, 1995, vol. 26A, pp. 525-34.

    Article  Google Scholar 

  14. I. Madariaga and I. Gutiérrez: Acta Mater., 1999, vol. 47, pp. 951-60.

    Article  Google Scholar 

  15. T. Yamada, H. Terasaki and Y. Komizo: ISIJ Int., 2009, vol. 49, pp. 1059-62.

    Article  Google Scholar 

  16. S. Aihara, G. Shigesato, M. Sugiyama, and R. Uemori: Nippon Steel Technical Report No. 91, 2005, pp. 43–48.

  17. J.-H. Shim, Y.W. Cho, S.H. Chung, J.-D. Shim and D.N. Lee: Acta Mater., 1999, vol. 47, pp. 2751-60.

    Article  Google Scholar 

  18. J.-H. Shim, J.-S. Byun, Y.W. Cho, Y.-J. Oh, J.-D. Shim and D.N. Lee: Scripta Mater., 2001, vol. 44, pp. 49-54.

    Article  Google Scholar 

  19. J.-H. Shim, Y.-J. Oh, J.-Y. Suh, Y.W. Cho, J.-D. Shim, J.-S. Byun and D.N. Lee: Acta Mater., 2001, vol. 49, pp. 2115-22.

    Article  Google Scholar 

  20. J.-S. Byun, J.-H. Shim, Y.W. Cho and D.N. Lee: Acta Mater., 2003, vol. 51, pp. 1593-1606.

    Article  Google Scholar 

  21. J.S. Seo, H.J. Kim and C. Lee: ISIJ Int., 2013, vol. 53, pp. 880-86.

    Article  Google Scholar 

  22. Y. Kang, J. Jang, J.H. Park and C. Lee: Met. Mater. Int., 2014, vol. 20, pp. 119-27.

    Article  Google Scholar 

  23. Y. Kang, K. Han, J.H. Park and C. Lee: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 4753-57.

    Article  Google Scholar 

  24. M. Enomoto: Met. Mater., 1998, vol. 4, pp. 115-23.

    Article  Google Scholar 

  25. T. Pan, Z. Yang, B. Bai and H. Fang: Acta. Metall. Sinica., 2003, vol. 39, pp. 1037-42.

    Google Scholar 

  26. J.R. Yang and H.K.D.H. Bhadeshia: J. Mater. Sci., 1991, vol. 26, pp. 839-45.

    Article  Google Scholar 

  27. S.S. Babu and H.K.D.H. Bhadeshia: Mater. Trans. JIM, 1991, vol. 32, pp. 679-88.

    Article  Google Scholar 

  28. G.I. Rees and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 1994, vol. 10, pp. 353-58.

    Article  Google Scholar 

  29. G. Thewlis, J.A. Whiteman and D.J. Senogles: Mater. Sci. Technol., 1997, vol. 13, pp. 257-74.

    Article  Google Scholar 

  30. J.R. Yang and H.K.D.H. Bhadeshia: Mater. Sci. Technol., 1989, vol. 5, pp. 93-97.

    Article  Google Scholar 

  31. G. Miyamoto, T. Shinyoshi, J. Yamaguchi, T. Furuhara, T. Maki and R. Uemori: Scripta Mater., 2003, vol. 48, pp. 371-77.

    Article  Google Scholar 

  32. M. Strangwood and H.K.D.H. Bhadeshia: Proceedings of the Conference on Advances in Welding Science and Technology, ASM International, Materials Park, OH, 1987, pp. 187–91.

  33. M. Strangwood: Ph.D. Thesis, University of Cambridge, Cambridge, U.K., 1987.

  34. Y.M. Kim, H. Lee and N.J. Kim: Mat. Sci. Eng. A-Struct., 2008, vol. 478, pp. 361-70.

    Article  Google Scholar 

  35. S.S. Babu: Curr. Opin. Solid St. M., 2004, vol. 8, pp. 267-78.

    Article  Google Scholar 

  36. C.H. Lee, H.K.D.H. Bhadeshia and H.-C. Lee: Mat. Sci. Eng. A-Struct., 2003, vol. 360, pp. 249-57.

    Article  Google Scholar 

  37. G.M. Evans: Weld. J., 1982, vol. 61, pp. 125s-132s.

    Google Scholar 

  38. G.M. Evans: IIW Doc. II-A-460-78.

  39. E. Surian, J. Trotti, A. Cassanelli and L.A. de Vedia: Weld. J., 1994, vol. 73, pp. 45s-53s.

    Google Scholar 

  40. E. Surian, M. Ramini de Rissone and L. de Vedia: Weld. J., 2005, vol. 84, pp. 53s-62s.

    Google Scholar 

  41. M.H. Avazkonandeh-Gharavol, M. Haddad-Sabzevar and A. Haerian: J. Mater. Sci., 2009, vol. 44, pp. 186-97.

    Article  Google Scholar 

  42. J.H. Chen, T.D. Xia and C. Yan: Weld. J., 1993, vol. 72, pp. 19s-27s.

    Google Scholar 

  43. Z.L. Zhou and S.H. Liu: Acta. Metall. Sinica, 1998, vol. 11, pp. 87-92.

    Google Scholar 

  44. W.W. Bose-Filho, A.L.M. Carvalho and M. Strangwood: Mater. Charact., 2007, vol. 58, pp. 29-39.

    Article  Google Scholar 

  45. K. Easterling: Introduction to the physical metallurgy of welding, p. 20, Butterworth, London, 1983.

    Google Scholar 

  46. A.-F. Gourgues, H.M. Flower and T.C. Lindley: Mater. Sci. Technol., 2000, vol. 16, pp. 26-40.

    Article  Google Scholar 

  47. J.S. Park, C. Lee and J.H. Park: Metall. Mater. Trans. B, 2012, vol. 43B, pp. 1550-64.

    Article  Google Scholar 

  48. A. Hasegawa, K. Morita and N. Sano: Tetsu-to-Hagané, 1995, vol. 81, pp. 1109-13.

    Google Scholar 

  49. M. Wakoh, T. Sawai and S. Mizoguchi: ISIJ Int., 1996, vol. 36, pp. 1014-21.

    Article  Google Scholar 

  50. Y.-B. Kang and H.-G. Lee: ISIJ Int., 2010, vol. 50, pp. 501-08.

    Article  Google Scholar 

  51. D.A. Porter, K.E. Easterling and M.Y. Sherif: Phase transformations in metals and alloys, p. 90, CRC Press, New York, 2009.

    Google Scholar 

  52. R. Ciach, B. Dukiet-Zawadzka and T.D. Ciach: J. Mater. Sci., 1978, vol. 13, pp. 2676-86.

    Article  Google Scholar 

  53. W.C. Leslie: The physical metallurgy of steels, p. 176, McGraw-Hill, New York, 1982.

    Google Scholar 

Download references

Acknowledgments

This work was supported by the research fund of Hanyang University (HY-2011-G).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changhee Lee.

Additional information

Manuscript submitted November 25, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Y., Han, K., Park, J.H. et al. Variation in the Chemical Driving Force for Intragranular Nucleation in the Multi-pass Weld Metal of Ti-Containing High-Strength Low-Alloy Steel. Metall Mater Trans A 46, 3581–3591 (2015). https://doi.org/10.1007/s11661-015-2958-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2958-5

Keywords

Navigation