Skip to main content

The Impact of Martensite Deformation on Shape Memory Effect Recovery Strain Evolution

Abstract

The one-way shape memory effect of polycrystalline NiTi is investigated after differential levels of martensite deformation. Martensite naturally forms an energy-minimizing configuration, referred to as self-accommodated, of differently oriented martensite variants, which are internally twinned. Stress preferentially orients a select variant that eventually detwins and plastically deforms at the highest stress levels. In this work, the underlying morphology is ascertained based on the evolution of micro-scale deformation measurements using digital image correlation analysis of three characteristic material responses. An initial martensitic structure is deformed at constant temperature. The forward austenite-to-martensite and reverse martensite-to-austenite phase transformations take place during temperature cycling under a constant stress. The austenite-to-martensite transformation is tensile stress induced at a constant temperature and initiates via a localized strain band. For the conversion of self-accommodated martensite to orientated morphology and further deformation, spatially heterogeneous strains accrue over the entire specimen surface. Shape memory recovery during heating, on the other hand, culminates with a centralized strain localization that persists as recovery approaches completion. The recovery temperature differential (A f − A s) depends on the extent of deformation. This work characterizes the influence of stress on phase transformation and martensite deformation morphology for deformation in the martensitic state compared to the stress-induced phase transformation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. T. W. Duerig, K. N. Melton, D. Stöckel, and C. M. Wayman: Engineering Aspects of Shape Memory Alloys, Butterworth-Heinemann Ltd, London, 1990.

    Google Scholar 

  2. H. Funakubo: Shape Memory Alloys (Precision Machinery and Robotics), vol 1, Gordon and Breach Science Publishers, New York, NY, 1987.

    Google Scholar 

  3. K. Otsuka and C. Wayman: Shape Memory Materials, Cambridge University Press, Cambridge, MA, 1998.

    Google Scholar 

  4. K. Bhattacharya: Microstructure of Martensite: Why It Forms and How It Gives Rise to the Shape-Memory Effect, Oxford University Press, Oxford, 2003.

    Google Scholar 

  5. D.C. Lagoudas, ed.: Shape Memory Alloys: Modeling and Engineering Applications, Springer, Berlin, 2008.

  6. T. Saburi and S. Nenno: in International Conference on Solid to Solid Phase Transformation, H.I. Aaronson, D.E. Laughlin, R.F. Sekerka, and C.M. Wayman, eds., Pittsburgh, 1981, pp. 1455–79.

  7. K. Bhattacharya, Arch. Ration. Mech. Anal. 120, 201–44 (1992).

    Article  Google Scholar 

  8. K. Knowles and D. Smith, Acta Metall. 29, 101–10 (1981).

    Article  Google Scholar 

  9. H. Sehitoglu, R. Hamilton, D. Canadinc, X. Y. Zhang, K. Gall, I. Karaman, Y. Chumlyakov, and H. J. Maier, Metall. Mater. Trans. A 34A, 5–13 (2003).

    Article  Google Scholar 

  10. K. Bhattacharya, S. Conti, and G. Zanzotto, Nature 428, 55–59 (2004).

    Article  Google Scholar 

  11. R. F. Hamilton, H. Sehitoglu, Y. Chumlyakov, and H. J. Maier, Acta Mater. 52, 3383–3402 (2004).

    Article  Google Scholar 

  12. Y. Liu, Z. Xie, J. Van Humbeeck, and L. Delaey, Scripta Mater. 41, 1273–81 (1999).

    Article  Google Scholar 

  13. Y. Liu, Y. Liu, and J. Van Humbeeck, Acta Metall. 47, 199–209 (1999).

    Google Scholar 

  14. Y. Liu, Y. Liu, and J. Van Humbeeck, Acta Metall. 39, 1047–55 (1998).

    Google Scholar 

  15. Y. Liu, Z. L. Xie, J. Van Humbeeck, and L. Delaey, Acta Mater. 47, 645–60 (1999).

    Article  Google Scholar 

  16. S. Daly, G. Ravichandran, and K. Bhattacharya, Acta Mater. 55, 3593–3660 (2007).

    Article  Google Scholar 

  17. C. Efstathiou, H. Sehitoglu, J. Carroll, J. Lambros, and H. J. Maier, Acta Mater. 56, 3791–99 (2008).

    Article  Google Scholar 

  18. C. Efstathiou and H. Sehitoglu, Scripta Mater. 59, 1263–66 (2008).

    Article  Google Scholar 

  19. R. F. Hamilton, H. Sehitoglu, K. Aslantas, C. Efstathiou, and H. J. Maier, Acta Mater. 56, 2231–36 (2008).

    Article  Google Scholar 

  20. K. Kim and S. Daly, Exp. Mech. 51, 641–52 (2010).

    Article  Google Scholar 

  21. M. Kimiecik, J. W. Jones, and S. Daly, Mater. Lett. 95, 25–29 (2013).

    Article  Google Scholar 

  22. K. Kim and S. Daly: Smart Mater. Struct., 2013, vol. 22, art. id. 075012.

  23. J. Frenzel, E. P. George, A. Dlouhy, C. Somsen, M. F.-X. Wagner, and G. Eggeler, Acta Mater. 58, 3444–58 (2010).

    Article  Google Scholar 

  24. Y. Liu and S. P. Galvin, Acta Mater. 45, 4431–39 (1997).

    Article  Google Scholar 

  25. P. Sittner, Y. Liu, and V. Novak, J. Mech. Phys. Solids 53, 1719–46 (2005).

    Article  Google Scholar 

  26. T. C. Chu, W. F. Ranson, M. A. Sutton, and W. H. Peters, Exp. Mech. 25, 232–44 (1985).

    Article  Google Scholar 

  27. M. A. Sutton, W. J. Walters, W. H. Peters, W. F. Ranson, and S. R. Mcneil, Image Vis. Comput. 1, 133–39 (1983).

    Article  Google Scholar 

  28. M.A. Sutton, C. Mingqi, W.H. Peters, Y.J. Chao, and S.R. McNeill, Image Vis. Comput. 4, 143–50 (1986).

    Article  Google Scholar 

  29. J. Van Humbeeck, Adv. Eng. Mater. 3, 837–50 (2001).

    Article  Google Scholar 

  30. Y. Liu and D. Favier, Acta Mater. 48, 3489–99 (2000).

    Article  Google Scholar 

  31. G. Tan and Y. Liu, Intermetallics 12, 373–81 (2004).

    Article  Google Scholar 

  32. R. Salzbrenner and M. Cohen, Acta Metall. 27, 739–48 (1979).

    Article  Google Scholar 

  33. J. Ortin and A. Planes, J. Phys. IV 1, 13–23 (1991).

    Google Scholar 

  34. J. Ortin and A. Planes, Acta Metall. 37, 1433–41 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reginald F. Hamilton.

Additional information

Manuscript submitted December 29, 2014.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lanba, A., Hamilton, R.F. The Impact of Martensite Deformation on Shape Memory Effect Recovery Strain Evolution. Metall Mater Trans A 46, 3481–3489 (2015). https://doi.org/10.1007/s11661-015-2943-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2943-z

Keywords

  • Austenite
  • Martensite
  • Digital Image Correlation
  • Shape Memory Effect
  • Martensitic Phase Transformation