Skip to main content
Log in

Additive Manufacturing of IN100 Superalloy Through Scanning Laser Epitaxy for Turbine Engine Hot-Section Component Repair: Process Development, Modeling, Microstructural Characterization, and Process Control

  • Symposium: Additive Manufacturing: Interrelationships of Fabrication, Constitutive Relationships Targeting Performance, and Feedback to Process Control
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This article describes additive manufacturing (AM) of IN100, a high gamma-prime nickel-based superalloy, through scanning laser epitaxy (SLE), aimed at the creation of thick deposits onto like-chemistry substrates for enabling repair of turbine engine hot-section components. SLE is a metal powder bed-based laser AM technology developed for nickel-base superalloys with equiaxed, directionally solidified, and single-crystal microstructural morphologies. Here, we combine process modeling, statistical design-of-experiments (DoE), and microstructural characterization to demonstrate fully metallurgically bonded, crack-free and dense deposits exceeding 1000 μm of SLE-processed IN100 powder onto IN100 cast substrates produced in a single pass. A combined thermal-fluid flow-solidification model of the SLE process compliments DoE-based process development. A customized quantitative metallography technique analyzes digital cross-sectional micrographs and extracts various microstructural parameters, enabling process model validation and process parameter optimization. Microindentation measurements show an increase in the hardness by 10 pct in the deposit region compared to the cast substrate due to microstructural refinement. The results illustrate one of the very few successes reported for the crack-free deposition of IN100, a notoriously “non-weldable” hot-section alloy, thus establishing the potential of SLE as an AM method suitable for hot-section component repair and for future new-make components in high gamma-prime containing crack-prone nickel-based superalloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S.J. Balsone: The Gas Turbine Handbook, US Department, Office of Fossil Energy, 2004, pp. 411–19.

  2. Sv Takeuchi and E Kuramoto: Acta Metallurgica 1973, vol. 21, pp. 415–25.

    Article  Google Scholar 

  3. MH Yoo: Scripta Metall. 1986, vol. 20, pp. 915–20.

    Article  Google Scholar 

  4. O. Hunziker, D. Dye, S.M. Roberts, R.C. Reed: In Mathematical Modelling of Weld Phenomena 5, (IOM Communications: London, 2001), pp 299-320.

    Google Scholar 

  5. MB Henderson, D Arrell, R Larsson, M Heobel and G Marchant: Science and Technology of Welding & Joining 2004, vol. 9, pp. 13-21.

    Article  Google Scholar 

  6. YM Yaman and MC Kuşhan: Journal of materials science letters 1998, vol. 17, pp. 1231–34.

    Article  Google Scholar 

  7. G Çam and M Koçak: International Materials Reviews 1998, vol. 43, pp. 1-44.

    Article  Google Scholar 

  8. M.T. Rush, P.A. Colegrove, Z. Zhang and D. Broad: Journal of materials processing technology 2012, vol. 212, pp. 188–97.

    Article  Google Scholar 

  9. Yulai Xu, Lei Zhang, Jun Li, Xueshan Xiao, Xiuli Cao, Guoqing Jia and Zhi Shen: Materials Science and Engineering: A 2012, vol. 544, pp. 48-53.

    Article  Google Scholar 

  10. A. Gregori: TWI Report, 2003, pp 1–32.

  11. M.H. Haafkens and J.H.G. Matthey: Weld. J. (Miami), 1982, 61:25–30.

    Google Scholar 

  12. B Geddes, H Leon, X Huang: Superalloys: Alloying and Performance. ASM International, Metals Park, OH, 2010.

    Google Scholar 

  13. WA Owczarski, DS Duvall and CP Sullivan: Weld J 1966, vol. 45, p. 145–55.

    Google Scholar 

  14. W. Hofmeister, M. Wert, J. Smugeresky, J.A. Philliber, M. Griffith and M. Ensz: JOM 1999, vol. 51, pp. 1-6.

    Article  Google Scholar 

  15. Gary K Lewis and Eric Schlienger: Materials & Design 2000, vol. 21, pp. 417–23.

    Article  Google Scholar 

  16. M. Gäumann: PhD Thesis, EPFL Lausanne, Lausanne, 1999.

  17. S. Das, T. Fuesting, L. Brown, N. Harlan, G. Lee, J. J. Beaman, D. L. Bourell, J. W. Barlow, and K. Sargent: Materials and Manufacturing Processes 1998, Vol. 13, pp. 241–61.

    Article  Google Scholar 

  18. S. Das: PhD Thesis, University of Texas at Austin, Austin 1998.

  19. S. Das, T. Fuesting, G. Danyo, J. J. Beaman and D. L. Bourell, Materials and Design 2000, Vol. 21, pp. 63-73.

    Article  Google Scholar 

  20. J.A. Ramos, J. Murphy, K. Lappo, K. Wood, D.L. Bourell, and J.J. Beaman: Proceedings of 13th Solid Freeform Fabrication Symposium, Austin, TX, 2002, pp. 211–23.

  21. LE Murr, E Martinez, XM Pan, SM Gaytan, JA Castro, CA Terrazas, F Medina, RB Wicker and DH Abbott: Acta Materialia 2013, vol. 61, pp. 4289–96.

    Article  Google Scholar 

  22. Guijun Bi, Chen-Nan Sun, Hui-chi Chen, Fern Lan Ng and Cho Cho Khin Ma: Materials & Design 2014, vol. 60, pp. 401–08.

    Article  Google Scholar 

  23. Ranadip Acharya, Rohan Bansal, Justin J Gambone and Suman Das: Metallurgical and Materials Transactions B 2014, vol. 45A, pp. 2247–61.

    Article  Google Scholar 

  24. Ranadip Acharya, Rohan Bansal, Justin J Gambone and Suman Das: Metallurgical and Materials Transactions B 2014, vol. 45, pp. 2279-2290.

    Article  Google Scholar 

  25. RH Myers, DC Montgomery, CM Anderson-Cook: Response Surface Methodology: Process and Product Optimization Using Designed Experiments. Wiley, New York, 2009.

    Google Scholar 

  26. Allan Ghaemi: Applied optics 1996, vol. 35, pp. 2211-2215.

    Article  Google Scholar 

  27. R. Bansal: PhD Thesis, Georgia University of Technology, Atlanta, 2013.

  28. J.J. Gambone: M.S. Thesis, Georgia University of Technology, Atlanta, 2012.

  29. I. Hamill: Implementation of a Solidification Model in CFX-5, CFX Ltd., Oxfordshire, U.K., 2003.

    Google Scholar 

  30. M Zieliñska, M Yavorska, M Porêba and J Sieniawski: Arch. Mater. Sci. 2010, vol. 36, pp. 35–38.

    Google Scholar 

  31. Stephen J. Donachie Matthew J. Donachie: Superalloys, A Technical Guide. (ASM International, Metals Park, OH, 2003), p. 246.

    Google Scholar 

  32. Ys Lee, M Nordin, SS Babu and DF Farson: Welding Journal 2014, vol. 93, pp. 292–300.

    Google Scholar 

  33. J. Xie, A. Kar, J. A. Rothenflue and W. P. Latham: Journal of Laser Applications 1997, vol. 9, pp. 77-85.

    Article  Google Scholar 

Download references

Acknowledgments

This work is sponsored by the Office of Naval Research through grants N00173-07-1-G031, N00014-10-1-0526, N00014-11-1-0670, and N00014-14-1-0658.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suman Das.

Additional information

Manuscript submitted December 31, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Acharya, R., Das, S. Additive Manufacturing of IN100 Superalloy Through Scanning Laser Epitaxy for Turbine Engine Hot-Section Component Repair: Process Development, Modeling, Microstructural Characterization, and Process Control. Metall Mater Trans A 46, 3864–3875 (2015). https://doi.org/10.1007/s11661-015-2912-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2912-6

Keywords

Navigation