Skip to main content
Log in

Influence of Intermediate Annealing on the Nanostructure and Mechanical Properties of Pure Copper Processed by Equal Channel Angular Pressing and Cold Rolling

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The effects of intermediate heat treatment on the nanostructure and the mechanical properties of pure copper samples processed by four passes of equal channel angular pressing (ECAP) and cold rolling (CR) with a total reduction of 55 pct were investigated. The annealing treatments were done at 423 K, 463 K, and 523 K (150 °C, 190  °C and 250 °C) for 15 minutes. Microstructural examinations revealed no trace of a recrystallization after annealing at 423 K (150 °C). X-ray diffraction analysis illustrated that employing annealing treatment at 463 K (190 °C) decreased the coherent domain size and, consequently, increased the microstrain value. Moreover, nucleation of the newly formed grains resulted from discontinuous static recrystallization decreased the mean grain size. The yield and the tensile strength were also enhanced due to the reduction of the coherent domain size, the internal stress augmentation, and the presence of the new fine grains. Annealing at 523 K (250 °C) increased the fraction of the recrystallized structure and, consequently, decreased the fraction of the grains created by ECAP. As a result, the typical rolling texture intensified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. R. Z. Valiev: Nat. Mater., 2004, vol. 3, pp. 511-16.

    Article  Google Scholar 

  2. R. Z. Valiev, R. K. Islamgaliev, I. V. Alexandrov: Prog. Mater. Sci., 2000, vol. 45, pp. 103-89.

    Article  Google Scholar 

  3. R. Z. Valiev, T. G. Langdon: Prog. Mater. Sci., 2006, vol. 51, pp. 881-981.

    Article  Google Scholar 

  4. F. Dalla Torre, R. Lapovok, J. Sandlin, P.F. Thomson, C.H.J. Davies, and E.V. Pereloma: Acta Mater., 2004, vol. 52, pp. 4819–32.

  5. H. Jazaeri, F. J. Humpherys: Acta Mater., 2004, vol. 52(11), pp. 3239-50.

    Article  Google Scholar 

  6. Y. Huang, P. B. Prangnell: Acta Mater., 2008, vol 56(7), pp. 1619-32.

    Article  Google Scholar 

  7. N. D. Stepanov, A. V. Kuznetsov, G. A. Salishchev, G. I. Raab, R. Z. Valiev: Mater. Sci. Eng. A, 2012, vol. 554, pp. 105-15.

    Article  Google Scholar 

  8. Sh. Ranjbar Bahadori, K. Dehghani, F. Bakhshandeh: Mater. Sci. Eng. A, 2013, vol. 583, pp. 36-42.

    Article  Google Scholar 

  9. Sh. Ranjbar Bahadori, K. Dehghani, F. Bakhshandeh: Mater. Sci. Eng. A, 2013, vol. 588, pp. 260-64.

    Article  Google Scholar 

  10. H. Akamatsu, T. Fujinami, Z. Horita, T. G. Langdon: Scr. Mater., 2001, vol. 44, pp. 759-64.

    Article  Google Scholar 

  11. K. Park, H. Lee, Ch. Lee, D. Shin: Mater. Sci. Eng. A, 2005, vol. 393, pp. 118-24.

    Article  Google Scholar 

  12. W. Z. Han, S. D. Wu, S. X. Li, Y. D. Wang: Mater. Sci. Eng. A, 2008, vol. 483-484, pp. 430-32.

    Article  Google Scholar 

  13. X. Molodova, S. Bhaumik, M. Winning, G. Gottstein: Mater. Sci. Forum, 2006, vol. 503-504, pp. 469-74.

    Article  Google Scholar 

  14. X. Molodova, G. Gottstein, M. Winning, R. J. Hellmig: Mater. Sci. Eng. A, 2007, vol. 460-461, pp. 204-13.

    Article  Google Scholar 

  15. T. Ungár, J. Gubicza, G. Ribárik, A. Borbély: J. Appl. Crystallogr., 2001, vol. 34, pp. 298-310.

    Article  Google Scholar 

  16. G. Ribárik, T. Ungár, J. Gubicza: J. Appl. Crystallogr., 2001, vol. 34, pp. 669-76.

    Article  Google Scholar 

  17. T. Ungár: Scr. Mater., 2004, vol. 51, pp. 777-81.

    Article  Google Scholar 

  18. W. J. Zhao, H. Ding, Y. P. Ren, S. M. Hao, J. Wang, J. T. Wang: Mater. Sci. Eng. A, 2005, vol. 410-411, pp. 348-52.

    Article  Google Scholar 

  19. R. E. Reed-Hill, R. Abbaschian: Physical metallurgy principles, 3rd ed., PWS Publishing, Boston, 1994.

    Google Scholar 

  20. F. J. Humphreys, M. Hatherly: Recrystallization and related annealing phenomena, 2nd ed., Elsevier, Netherlands, 2007.

    Google Scholar 

  21. H. S. Kim, W. Y. Kim, K. H. Song: J. Alloy. Compd., 2012, vol. 536, pp. S200-03.

    Article  Google Scholar 

  22. G. R. Canova, U. F. Kocks, J. J. Jonas: Acta Metall., 1984, vol. 32, pp. 211-26.

    Article  Google Scholar 

  23. L. S. Tóth, P. Gilormini, J. J. Jonas: Acta Metall., 1988, vol. 36, pp. 3077-91.

    Article  Google Scholar 

  24. S. Li, I. J. Beyerlein, M. A. M. Bourke: Mater. Sci. Eng. A, 2005, vol. 394, pp. 66-77.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shahab Ranjbar Bahadori.

Additional information

Manuscript submitted July 31, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjbar Bahadori, S., Dehghani, K. Influence of Intermediate Annealing on the Nanostructure and Mechanical Properties of Pure Copper Processed by Equal Channel Angular Pressing and Cold Rolling. Metall Mater Trans A 46, 2796–2802 (2015). https://doi.org/10.1007/s11661-015-2908-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2908-2

Keywords

Navigation