Metallurgical and Materials Transactions A

, Volume 46, Issue 6, pp 2718–2725 | Cite as

Mechanism of Mechanically Induced Nanocrystallization of Amorphous FINEMET Ribbons During Milling

  • T. GheiratmandEmail author
  • H. R. Madaah Hosseini
  • P. Davami
  • G. Ababei
  • M. Song


Melt-spun FINEMET amorphous ribbons were milled for different periods up to 65 minutes. The effect of milling time on the structure has been investigated using X-ray diffraction, differential scanning calorimetry, scanning electron microscopy, and transmission electron microscopy. The results showed that partial crystallization of the amorphous powder occurs during milling. Transmission electron microscope observations confirmed that an α-Fe(Si) phase with a mean crystallite size of ~9 nm nucleates inhomogenously on the plastically deformed regions. Differential scanning calorimetry analysis indicated that under high-energy vibrational milling, the Fe23B6 phase becomes unstable, and Fe2B and Fe3B phases could form instead in the amorphous matrix. Gibbs free energy calculations explained the increase of crystalline phases’ nucleation rates under the high pressures resulting from the mechanical milling impacts.


Milling Shear Band Amorphous Alloy Amorphous Matrix Mechanical Milling 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Dr E. Devlin of the Institute of nanoscience and nanotechnology, NCSR Demokritos, Athens, Greece.


  1. 1.
    T. Gheiratmand, H.R. Madaah Hosseini, P. Davami, F. Ostadhossein, M. Song, and M. Gjoka: Nanoscale, 2013, vol. 5, pp. 7520–27.CrossRefGoogle Scholar
  2. 2.
    S. Alleg, S. Kartout, M. Ibrir, S. Azzaza, N.E. Fenineche, and J.J. Suñol: J. Phys. Chem. Solids, 2013, vol. 74, pp. 550–57.CrossRefGoogle Scholar
  3. 3.
    C. Smith, S. Katakam, S. Nag, Y.R. Zhang, J.Y. Law, R. Ramanujan, N. Dahotre, and R. Banerjee: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 2998–3009.CrossRefGoogle Scholar
  4. 4.
    L.L. Meng, X.Y. Li, J. Pang, L. Wang, B. An, L.J. Yin, K.K. Song, and W.M. Wang: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 5122–33.CrossRefGoogle Scholar
  5. 5.
    D. L. Zhang: Prog. Mater Sci., 2004, vol. 49, pp. 537–60.CrossRefGoogle Scholar
  6. 6.
    C. Suryanarayana: Prog. Mater. Sci., 2001, vol. 46, pp. 1–184.CrossRefGoogle Scholar
  7. 7.
    B. Movahedi, M.H. Enayati, and C.C. Wong: Mater. Sci. Eng. B, 2010, vol. 172, pp. 50–4.CrossRefGoogle Scholar
  8. 8.
    Y.J. Liu, I.T. H. Chang, and P. Bowen: Mater. Sci. Eng. A, 2001, vol. 304–306, pp. 389–93.CrossRefGoogle Scholar
  9. 9.
    S. Azzaza, S. Alleg, and J. Suñol: Adv. Mater. Phys. Chem., 2013, vol. 3, pp. 90–100.CrossRefGoogle Scholar
  10. 10.
    V.A. Peña Rodríguez, J. Quispe Marcatoma, J.M. Agüero Andrade, E.M. Baggio-Saitovitch, A. Caytueros Villegas, and E.C. Passamani: Mater. Sci. Eng. A, 2006, vol. 429, pp. 261–65.CrossRefGoogle Scholar
  11. 11.
    J.J. Ipus, J.S. Blázquez, V. Franco, and A. Conde: Intermetallics, 2008, vol. 16, pp. 1073–82.CrossRefGoogle Scholar
  12. 12.
    L.B. Hong, C. Bansal, and B. Fultz: Nanostruct. Mater., 1994, vol. 4, pp. 949–56.CrossRefGoogle Scholar
  13. 13.
    J.H. Kim and C.H. Park: J. Alloys Compd., 2014, vol. 585, pp. 69–74.CrossRefGoogle Scholar
  14. 14.
    D.R. Maurice and T.H. Courtney: Metall. Mater. Trans. A, 1990, vol. 21A, pp. 289–303.CrossRefGoogle Scholar
  15. 15.
    F.Q. Guo and K. Lu: Metall. Mater. Trans. A, 1997, vol. 28A, pp. 1123–31.CrossRefGoogle Scholar
  16. 16.
    J.Y. Yang, J.S. Wu, T.J. Zhang, and K. Cui: J. Alloys Compd., 1998, vol. 265, pp. 269–72.CrossRefGoogle Scholar
  17. 17.
    M.E. McHenry, M.A. Willard, and D.E. Laughlin: Prog. Mater. Sci., 1999, vol. 44, pp. 291–433.CrossRefGoogle Scholar
  18. 18.
    J.S. Blázquez, S. Lozano-Pérez, and A. Conde: Mater. Lett., 2000, vol. 45, pp. 246–50.CrossRefGoogle Scholar
  19. 19.
    T. Miki, K. Tsujita, S. Ban-Ya, and M. Hino: CALPHAD, 2006, vol. 30, pp. 449–54.CrossRefGoogle Scholar
  20. 20.
    M. Imafuku, S. Sato, H. Koshiba, E. Matsubara, and A. Inoue: Scripta Mater., 2001, vol. 44, pp. 2369–72.CrossRefGoogle Scholar
  21. 21.
    J. Fornell, S. González, E. Rossinyol, S. Suriñach, M.D. Baró, D.V. Louzguine-Luzgin, J.H. Perepezko, J. Sort, and A. Inoue: Acta Mater., 2010, vol. 58, pp. 6256–66.CrossRefGoogle Scholar
  22. 22.
    Y.R. Zhang and R.V. Ramanujan: J. Alloys Compd., 2005, vol. 403, pp. 197–205.CrossRefGoogle Scholar
  23. 23.
    P. Henits, Á. Révész, L.K. Varga, and Z. Kovács: Intermetallics, 2011, vol. 19, pp. 267–75.CrossRefGoogle Scholar
  24. 24.
    Y.X. Zhuang, J.Z. Jiang, T.J. Zhou, H. Rasmussen, L. Gerward, M. Mezouar, W. Crichton, and A. Inoue: Appl. Phys. Lett., 2000, vol. 77, pp. 4133–35.CrossRefGoogle Scholar
  25. 25.
    F. Ye and K. Lu: Acta Mater., 1998, vol. 46, pp. 5965–71.CrossRefGoogle Scholar
  26. 26.
    X.Y. Zhang, F.X. Zhang, J.W. Zhang, W.Yu, M. Zhang, J.H. Zhao, R.P. Liu, Y.F. Xu, and W.K. Wang: J. Appl. Phys., 1998, vol. 84, pp. 1918–23.CrossRefGoogle Scholar
  27. 27.
    Y.Y. Sun, M. Song, X.Z. Liao, and Y.H. He: J. Alloys Compd., 2011, vol. 509, pp. 6603–08.CrossRefGoogle Scholar
  28. 28.
    Y.Y. Sun, M. Song, X.Z. Liao, G. Sha, and Y.H. He: Mater. Sci. Eng. A, 2012, vol. 543, pp. 145–51.CrossRefGoogle Scholar
  29. 29.
    D. Basset, P. Matteazzi, and F. Miani: Mater. Sci. Eng. A, 1994, vol. 174, pp. 71–74.CrossRefGoogle Scholar
  30. 30.
    D. Basset, P. Matteazzi, and F. Miani: Mater. Sci. Eng. A, 1993, vol. 168, pp. 149–52.CrossRefGoogle Scholar
  31. 31.
    R.M. Davis, B. McDermott, and C.C. Koch: Metall. Mater. Trans. A, 1988, vol. 19A, pp. 2867–74.CrossRefGoogle Scholar
  32. 32.
    D. Maurice and T.H. Courtney: Metall. Mater. Trans. A, 1994, vol. 25, pp. 147–58.CrossRefGoogle Scholar
  33. 33.
    X.J. Gu, S.J. Poon, G.J. Shiflet, and M. Widom: Acta Mater., 2008, vol. 56, pp. 88–94.CrossRefGoogle Scholar
  34. 34.
    S.W. Lee, M.Y. Huh, S.W. Chae, and J.C. Lee: Scripta Mater., 2006, vol. 54, pp. 1439–44.CrossRefGoogle Scholar
  35. 35.
    M. Palumbo, C. Papandrea, and L. Battezzati: J. Mater. Sci., 2005, vol. 40, pp. 2431–35.CrossRefGoogle Scholar
  36. 36.
    K. Lu: Phys. Rev. B, 1995, vol. 51, pp. 18–27.CrossRefGoogle Scholar
  37. 37.
    D. Turnbull: J. Appl. Phys., 1950, vol. 21, pp. 1022–28.CrossRefGoogle Scholar
  38. 38.
    H.A. Shivaee and H.R. M. Hosseini: Thermochim. Acta, 2009, vol. 494, pp. 80–5.CrossRefGoogle Scholar
  39. 39.
    F. Spaepen: Acta Metall., 1977, vol. 25, pp. 407–15.CrossRefGoogle Scholar
  40. 40.
    L. Yao: Phd Thesis, In Institut für Angewandte Materialforschung F-I1, Berlin, 2011.Google Scholar
  41. 41.
    A.H. Taghvaei, M. Stoica, K.G. Prashanth, and J. Eckert: Acta Mater., 2013, vol. 61, pp. 6609–21.CrossRefGoogle Scholar
  42. 42.
    H. Chen, Y. He, G.J. Shiflet, and S.J. Poon: Nature, 1994, vol. 367, pp. 541–43.CrossRefGoogle Scholar
  43. 43.
    R.E. Reed-Hill and R. Abbaschian: Physical Metallurgy Principles, 3rd ed., PWS, Boston, 1994, pp. 495–501.Google Scholar

Copyright information

© The Minerals, Metals & Materials Society and ASM International 2015

Authors and Affiliations

  • T. Gheiratmand
    • 1
    Email author
  • H. R. Madaah Hosseini
    • 1
  • P. Davami
    • 1
  • G. Ababei
    • 2
  • M. Song
    • 3
  1. 1.Department of Materials Science and EngineeringSharif University of TechnologyTehranIran
  2. 2.National Institute of Research & Development for Technical PhysicsIasiRomania
  3. 3.State Key Laboratory of Powder MetallurgyCentral South UniversityChangshaP.R. China

Personalised recommendations