Skip to main content

Advertisement

Log in

Creep Mechanisms of a Ni-Co-Based-Wrought Superalloy with Low Stacking Fault Energy

  • Symposium: Multiscale Microstructure, Mechanics and Prognosis of High Temperature Alloys
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In order to study the influences of stress and temperature on the creep deformation mechanisms of a newly developed Ni-Co-based superalloy with low stacking fault energy, creep experiments were carried out under a stress range of 345 to 840 MPa and a temperature range of 923 K to 1088 K (650 °C to 815 °C). The mechanisms operated under the various creep conditions were identified and the reasons for their transformation were well discussed. A deformation mechanism map under different creep conditions was summarized, which provides a qualitative representation of the operative creep mechanisms as a function of stress and temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T.M. Pollock and A.S. Argon: Acta Metall Mater., 1992, vol. 40, pp. 1–30.

    Article  Google Scholar 

  2. C.M.F. Rae and R.C. Reed: Acta Mater., 2007, vol. 55, pp. 1067–81.

    Article  Google Scholar 

  3. M. Kelly, S.T. Wlodek, and D.A. Alden: in Superalloys, 1996, R.D. Kissinger, D.J. Deye, D. Anton, A.D. Cetel, M.V. Nathal, T.M. Pollock, and D.A. Woodford, eds., TMS, Warrendale, PA, 1996, pp. 120–36.

  4. H. Mughrabi and U. Tetzlaff: Adv. Eng. Mater., 2000, vol. 2, pp. 319–26.

    Article  Google Scholar 

  5. J. McCarver and R. Ritchie: Mater. Sci. Eng. A., 1982, vol. 55, pp. 63–67.

    Article  Google Scholar 

  6. D. Knowles and D. Hunt: Metall. Mater. Trans. A., 2002, vol. 33A, pp. 3165–72.

    Article  Google Scholar 

  7. T.P. Gabb, A. Garg, D.L. Ellis, and K.M. O’Connor: Detailed Microstructural Characterization of the Disk Alloy ME3, 2004.

  8. C.Y. Cui, Y.F. Gu, H. Harada, and A. Sato: Metall. Mater. Trans. A., 2005, vol. 36A, pp. 2921–27.

    Google Scholar 

  9. Y. Gu, C. Cui, H. Harada, T. Fukuda, D. Ping, A. Mitsuhashi, K. Kato, T. Kobayashi, and J. Fujioka: in Superalloys, 2008, R.C. Reed, K.A. Green, P. Caron, T.M. Gabb, M.G. Fahrmann, E.S. Huron, S.A. Woodard, eds. TMS, Warrendale, PA, 2008, pp. 14–18.

  10. Y.F. Gu, C. Cui, D. Ping, H. Harada, A. Sato, and J. Fujioka: Mater. Sci. Forum., 2007, vol. 546, pp. 1277–80.

    Article  Google Scholar 

  11. P. Willemiin and M. Durand-Charre: J. Mater Sci., 1990, vol. 25, pp. 168–74.

    Article  Google Scholar 

  12. Y. Yuan, Y. Gu, Z. Zhong, T. Osada, C. Cui, T. Tetsui, T. Yokokawa, and H. Harada: J. Microsc., 2012, vol. 248, pp. 34–41.

    Article  Google Scholar 

  13. Z. Zhong, Y. Gu, Y. Yuan, T. Yokokawa, and H. Harada: Mater. Charact., 2012, vol. 67, pp. 101–11.

    Article  Google Scholar 

  14. Y. Yuan, Y. Gu, C. Cui, T. Osada, Z. Zhong, T. Tetsui, T. Yokokawa, and H. Harada: J. Mater. Res., 2011, vol. 26, pp. 2833–37.

    Article  Google Scholar 

  15. Y. Yuan, Y. Gu, T. Osada, Z. Zhong, T. Yokokawa, and H. Harada: Scripta Mater., 2012, vol. 67, pp. 137–40.

    Article  Google Scholar 

  16. Y. Yuan, Y. Gu, T. Osada, Z. Zhong, T. Yokokawa, and H. Harada: Scripta Mater., 2012, vol. 66, pp. 884–89.

    Article  Google Scholar 

  17. B. Decamps, S. Raujol, A. Coujou, F. Pettinari-Sturmel, N. Clement, D. Locq, and P. Caron: Philos. Mag. A., 2004, vol. 84, pp. 91–107.

  18. G. Boussinot, A. Finel, and Y. Le Bouar: Acta Mater., 2009, vol. 57, pp. 921–31.

    Article  Google Scholar 

  19. A.C. Lund and P.W. Voorhees: Acta Mater., 2002, vol. 50, pp. 2085–98.

    Article  Google Scholar 

  20. R.A. MacKay and M.V. Nathal: Acta Metall. Mater., 1990, vol. 38, pp. 993–1005.

    Article  Google Scholar 

  21. D. Locq, P. Caron, S. Raujol, F. Pettinari-Sturmel, A. Coujou, and N. Clément: in Superalloys, 2004, K.A. Green, T.M. Pollock, H. Harada, T.E. Howson, R.C. Reed, J.J. Schirra, and S. Walston, eds., TMS, Seven Springs, PA, 2004, pp. 179–87.

  22. S. Raujol, M. Benyoucef, D. Locq, P. Caron, F. Pettinari, N. Clément, and A. Coujou: Philos. Mag. A., 2006, vol. 86, pp. 1189–200.

    Article  Google Scholar 

  23. G. Viswanathan, P. Sarosi, M. Henry, D. Whitis, W. Milligan, and M. Mills: Acta Mater., 2005, vol. 53, pp. 3041–57.

    Article  Google Scholar 

  24. Y.H. Zhang and D.M. Knowles: Mater. Sci. Technol., 2002, vol. 18, pp. 917-23.

    Article  Google Scholar 

  25. M. Kolbe: Mater. Sci. Eng. A., 2001, vol. 319, pp. 383–87.

    Article  Google Scholar 

  26. R.R. Unocic, N. Zhou, L. Kovarik, C. Shen, Y. Wang, and M.J. Mills: Acta Mater., 2011, vol. 59, pp. 7325–39.

    Article  Google Scholar 

  27. R. Unocic, L. Kovarik, C. Shen, P. Sarosi, Y. Wang, J. Li, S. Ghosh, and M. Mills: in Superalloys, 2008, R.C. Reed, K.A. Green, P. Caron, T.M. Gabb, M.G. Fahrmann, E.S. Huron, S.A. Woodard, eds. TMS, Warrendale, PA, 2008, pp. 377–85.

  28. P. Caron, T. Khan, and P. Veyssiere: Philos. Mag. A., 1988, vol. 57, pp. 859–75.

    Article  Google Scholar 

  29. Q. Chen and D. Knowles: Mater. Sci. Eng. A., 2003, vol. 356, pp. 352–67.

    Article  Google Scholar 

  30. T. Link and M. Feller-Kniepmeier: Metall. Trans. A., 1992, vol. 23A, pp. 99–105.

    Article  Google Scholar 

  31. W.W. Milligan and S.D. Antolovich: Metall. Trans. A., 1991, vol. 22A, pp. 2309–18.

    Article  Google Scholar 

  32. M. Condat and B. Décamps: Scripta Metall., 1987, vol. 21, pp. 607–12.

    Article  Google Scholar 

  33. D.M. Knowles and Q.Z. Chen: Mater. Sci. Eng. A., 2003, vol. 340, pp. 88–102.

    Article  Google Scholar 

  34. M.G. Ardakani, M. McLean, and B.A. Shollock: Acta Mater., 1999, vol. 47, pp. 2593–602.

    Article  Google Scholar 

  35. L. Kovarik, R.R. Unocic, J. Li, P. Sarosi, C. Shen, Y. Wang, and M.J. Mills: Prog. Mater Sci., 2009, vol. 54, pp. 839–73.

    Article  Google Scholar 

  36. K. Kakehi: Metall. Mater. Trans. A., 1999, vol. 30A, pp. 1249–59.

    Article  Google Scholar 

  37. S. Karthikeyan, R.R. Unocic, P.M. Sarosi, G.B. Viswanathan, D.D. Whitis, and M.J. Mills: Scripta Mater., 2006, vol. 54, pp. 1157–62.

    Article  Google Scholar 

  38. P.M. Sarosi, G.B. Viswanathan, and M.J. Mills: Scripta Mater., 2006, vol. 55, pp. 727–30.

    Article  Google Scholar 

  39. J. Carey, P. Sargent, and D. Jones: J. Mater. Sci. Lett., 1990, vol. 9, pp. 572–75.

    Article  Google Scholar 

  40. S.M. Hafez Haghighat, G. Eggeler, and D. Raabe: Acta Mater., 2013, vol. 61, pp. 3709–23.

  41. J. Safari and S. Nategh: Mater. Sci. Eng. A., 2009, vol. 499, pp. 445–53.

    Article  Google Scholar 

  42. S.A. Sajjadi and S. Nategh: Mater. Sci. Eng. A., 2001, vol. 307, pp. 158–64.

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the High Technology Research and Development Program of China (No. 2014AA041701) and the National Natural Science Foundation of China (NSFC) under Grant Nos. 51171179, 51271174, 51331005, and 11332010.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuanyong Cui.

Additional information

Manuscript submitted November 15, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, C., Xu, L., Cui, C. et al. Creep Mechanisms of a Ni-Co-Based-Wrought Superalloy with Low Stacking Fault Energy. Metall Mater Trans A 46, 4601–4609 (2015). https://doi.org/10.1007/s11661-015-2818-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2818-3

Keywords

Navigation