Skip to main content
Log in

Physical Simulation of Investment Casting of Complex Shape Parts

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Development of investment casting process has been a challenge for manufacturers of complex shape parts. Numerous experimental casting trials are typically carried out to determine the optimum casting parameters for fabrication of high-quality products. In this work, it is demonstrated that physical simulation of investment casting can successfully predict microstructure and hardness in as-cast complex shape parts. The physical simulation tool consists of a thermal model and melting/solidification experiments in thermo-mechanical simulator. The thermal model is employed to predict local cooling rate during solidification at each point of a casting. Melting/solidification experiments are carried out under controlled cooling rates estimated by the thermal model. Microstructural and mechanical characterization of the solidified specimens is performed; the obtained results predict the local microstructure and mechanical properties of the casting. This concept is applied to investment casting of complex shape nozzle guide vanes from Mar-M247 Ni-based superalloy. Experimental casting trials are performed and the outcomes of physical simulation tool are validated against experimental results. It is shown that phase composition, secondary dendrite arm spacing, grain size, γ/γ′ eutectic size and volume fraction, size and shape of carbide particles, and local microhardness can be predicted at each point of the casting via physical simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. S. Pattnaik, D. B. Karunakar and P. K. Jha: J. Mater. Proc. Tech. 2012, vol. 212, pp. 2332-2348.

    Article  Google Scholar 

  2. R.C. Reed: The Superalloys: Fundamentals and Applications, Cambridge University Press, Cambridge, 2006.

    Book  Google Scholar 

  3. S.T. Mandziej: Mater. Tehnol. 2010, vol. 44, pp. 105-119.

    Google Scholar 

  4. R. W. Hamilton, D. See, S. Butler and P. D. Lee: Mater. Sci. Eng. A, 2003, vol. 343, pp. 290-300.

    Article  Google Scholar 

  5. M. Gonzalez, M. Goldschmit, A. Assanelli, E. Dvorkin and E. Berdaguer: Metall. Mater. Trans. B, 2003, vol. 34, pp. 455-473.

    Article  Google Scholar 

  6. J. Guo and M. Samonds: Modeling of Casting and Solidification Processes, vol. 22B, ASM International, Metals Park, 2010, pp. 168–95.

    Google Scholar 

  7. H.G. Suzuki, S. Nishimura, and S. Yamaguchi: Proc: Physical Simulation of Welding, Hot Forming and Continuous Casting, CANMET, Canada, 1988.

  8. J. Michalik and C. Kolmasiak: Metalurgija, 2009, vol. 48, pp. 71-74.

    Google Scholar 

  9. D. Ferguson, W. Chen, T. Bonesteel and J. Vosburgh: Mater. Sci. Eng. A, 2009, vol. 499, pp. 329-332.

    Article  Google Scholar 

  10. H. Y. Bor, C. N. Wei, R. R. Jeng and P. Y. Ko: Mater. Chem. Phy., 2008, vol. 109, pp. 334-341.

    Article  Google Scholar 

  11. ProCast User Manual & Technical Reference, ESI Software, France, 2007.

  12. M. Rappaz, M. Bellet, and M.O. Deville: Numerical Modelling in Materials Science and Engineering, Springer-Verlag, Berlin, 2002.

    Google Scholar 

  13. A.J. Torroba, O. Koeser, L. Calba, L. Maestro, E. Carreno-Morelli, M. Rahimian, S. Milenkovic, I. Sabirov, J. LLorca: Integr. Mater. Manuf. Innov., 2014, vol. 3, 25.

    Article  Google Scholar 

  14. E. Anglada, A. Meléndez, L.Maestro and I. Domiguez: Proc. Eng., 2013, vol. 63, pp. 75-83.

    Article  Google Scholar 

  15. M. Rahimian, S. Milenkovic and I. Sabirov: Phil. Mag. Lett., 2014, vol. 94, pp. 86-94.

    Article  Google Scholar 

  16. Y. Zhang, B. Huang and J. Li: Metall. Mater. Trans. A, 2013, vol. 44, pp. 1641-1644.

    Article  Google Scholar 

  17. W. Kurz and D.J. Fisher: Fundamentals of Solidification, 4th edn., Trans Tech Publications, Aedermannsdorf, Switzerland, 1998.

    Google Scholar 

  18. A. Szczotok and K. Rodak: IOP Conference Series: Materials Science and Engineering, 2012, vol. 35, p. 012006.

    Article  Google Scholar 

  19. L. Liu, F. Sommer and H. Z. Fu: Scripta Metall. Mater., 1994, vol. 30, pp. 587-591.

    Article  Google Scholar 

  20. L. Z. He, Q. Zheng, X. F. Sun, G. C. Hou, H. R. Guan and Z. Q. Hu: J. Mater. Sci., 2005, vol. 40, pp. 2959-2964.

    Article  Google Scholar 

  21. S. M. Seo, J. H. Lee, Y. S. Yoo, C. Y. Jo, H. Miyahara and K. Ogi: Metall. Mater. Trans. A, 2011, vol. 42, pp. 3150-3159.

    Article  Google Scholar 

  22. C. Liu, J. Shen, J. Zhang and L. Lou: J. Mater. Sci. Tech., 2010, vol. 26, pp. 306-310.

    Article  Google Scholar 

  23. S. Milenkovic, I. Sabirov and J. Llorca: Mater. Lett. 2012, vol. 73, pp. 216-219.

    Article  Google Scholar 

  24. S. Milenkovic, M. Rahimian and I. Sabirov: Metall. Mater. Trans. B, 2014, vol. 45, pp. 482-488.

    Article  Google Scholar 

  25. K. L. Gasko, G. M. Janowski and B. J. Pletka: Mater. Sci. Eng. A, 1988, vol. 104, pp. 1-8.

    Article  Google Scholar 

Download references

Acknowledgments

This investigation was carried out in frame of the VANCAST project (EU, FP7, ERA-NET MATERA+). SM and IS acknowledge gratefully the Spanish Ministry of Economy and Competitiveness for financial support through the Ramon y Cajal fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilchat Sabirov.

Additional information

Manuscript submitted October 17, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahimian, M., Milenkovic, S., Maestro, L. et al. Physical Simulation of Investment Casting of Complex Shape Parts. Metall Mater Trans A 46, 2227–2237 (2015). https://doi.org/10.1007/s11661-015-2815-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2815-6

Keywords

Navigation