Skip to main content

Advertisement

Log in

Thermal Stability and Properties of Deformation-Processed Cu-Fe In Situ Composites

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

This paper investigated the thermal stability, tensile strength, and conductivity of deformation-processed Cu-14Fe in situ composites produced by thermo-mechanical processing. The thermal stability was analyzed using scanning electronic microscope and transmission electron microscope. The tensile strength and conductivity were evaluated using tensile-testing machine and micro-ohmmeter, respectively. The Fe fibers in the deformation-processed Cu-14Fe in situ composites undergo edge recession, longitudinal splitting, cylinderization, break-up, and spheroidization during the heat treatment. The Cu matrix experiences recovery, recrystallization, and precipitation phase transition. The tensile strength and conductivity first increase with increasing temperature of heat treatment, reach peak values at different temperatures, and then decrease at higher temperatures. The value of parameter Z of the in situ composite reaches the peak of 2.86 × 107 MPa2 pct IACS after isothermal heat treatment at 798 K (525 °C) for 1 hour. The obtained tensile strength and conductivity of the in situ composites are 907 MPa and 54.3 pct IACS; 868 MPa and 55.2 pct IACS; 810 MPa and 55.8 pct IACS; or 745 MPa and 57.4 pct IACS, at η = 7.8 after isochronal heat treatment for 1 hour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. K.M. Liu, D.P. Lu, H.T. Zhou, Z.B. Chen, A. Atrens and L. Lu: Mater. Sci. Eng. A, 2013, vol. 584, pp. 114120.

    Article  Google Scholar 

  2. Z.X. Xie, H.Y. Gao, S.J. Dong, J. Wang, H. Huang and P. Luo: Mater. Trans., 2013, vol. 54, pp. 20752078.

    Article  Google Scholar 

  3. J.P. Ge, H. Zhao, Z.Q. Yao and S.H. Liu: Trans. Nonferrous Met. Soc. China, 2005, vol. 15, pp. 971977.

    Google Scholar 

  4. Z.W. Wu, J.J. Liu, Y. Chen and L. Meng: J. Alloys Compd., 2009, vol. 467, pp. 213218.

    Article  Google Scholar 

  5. Z.X. Xie, H.Y. Gao, J. Wang and B.D. Sun: Mater. Sci. Eng. A, 2011, vol. 529, pp. 388392.

    Article  Google Scholar 

  6. H. Fernee, J. Nairn and A. Atrens: J. Mater. Sci., 2001, vol. 36, pp. 27112719.

    Article  Google Scholar 

  7. J.S. Song and S.I. Hong: J. Alloys Compd., 2000, vol. 311, pp. 265269.

    Article  Google Scholar 

  8. Y.S. Kim, J.S. Song and S. I. Hong: J. Mater. Proc. Technol., 2002, vol. 130131, pp. 278282.

    Article  Google Scholar 

  9. S.I. Hong, J.S. Song and H.S. Kim: Scr. Mater., 2001, vol. 45, pp. 12951300.

    Article  Google Scholar 

  10. K.M. Liu, D.P. Lu, H.T. Zhou, A. Atrens, J. Zou, Y.L. Yang and S.M. Zeng: Mater. Sci. Eng. A, 2010, vol. 527, pp. 49534958.

    Article  Google Scholar 

  11. B. Sun, H. Gao, J. Wang and D. Shu: Mater. Lett., 2007, vol. 61, pp. 1002–1006.

    Article  Google Scholar 

  12. Y. Jin, K. Adachi, T. Takeuchi and H.G. Suzuki: J. Mater. Sci., 1998, vol. 33, pp. 13331341.

    Article  Google Scholar 

  13. H. Gao, J.Wang, D. Shu and B. Sun: Scr. Mater., 2005, vol. 53, pp. 11051109.

    Article  Google Scholar 

  14. J.Q. Deng, X.Q. Zhang, S.Z. Shang, F. Liu, Z.X. Zhao and Y.F. Ye: Mater. Des., 2009, vol. 30, pp. 4444–4449.

    Article  Google Scholar 

  15. J.S. Song, H.S. Kim, C.T. Lee and S.I. Hong: J. Mater. Proc. Technol., 2002, vol. 130131, pp. 272277.

    Article  Google Scholar 

  16. J.S. Song, S.I. Hong and H.S. Kim: J. Mater. Proc. Technol., 2001, vol. 113, pp. 610616.

    Article  Google Scholar 

  17. D. Raabe, S. Ohsaki and K. Hono: Acta Mater., 2009, vol. 57, pp. 52545263.

    Article  Google Scholar 

  18. K.M. Liu, D.P. Lu, H.T. Zhou, A. Atrens, Z.B. Chen, J. Zou and S.M. Zeng: J. Alloys Compd., 2010, vol. 500, pp. L22L25.

    Article  Google Scholar 

  19. D. Raabe and J. Ge: Scripta Mater., 2004, vol. 51, pp. 915920.

    Article  Google Scholar 

  20. Y. Liu, S. Shao, K.M. Liu, X.J. Yang and D.P. Lu: Mater. Sci. Eng. A, 2012, vol. 531, pp. 141146.

    Article  Google Scholar 

  21. K.M. Liu, D.P. Lu, H.T. Zhou, Y.L. Yang, A. Atrens and J. Zou: J. Mater. Eng. Perform., 2013, vol. 22, pp. 37233727.

    Article  Google Scholar 

  22. Z.X. Xie, H.Y. Gao, Q. Lu, J. Wang and B.D. Sun: J. Alloys Compd., 2010, vol. 508, pp. 320323.

    Article  Google Scholar 

  23. J.S. Song, S.I. Hong and Y.G. Park: J. Alloys Compd., 2005, vol. 388, pp. 6974.

    Article  Google Scholar 

  24. J.D. Klein, R.M. Rose, The effect of heat treatment on the superconducting properties of CuNb composites, J. Appl. Phys. 67 (1990) 930–934.

    Article  Google Scholar 

  25. J.S. Carpenter, R.J. Mccabe, S.J. Zheng, T.A. Wynn, N.A. Mara and I.J. Beyerlein: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 2192–2208.

    Article  Google Scholar 

  26. L. Qu, E. Wang, K. Han, X. Zuo, L. Zhang, P. Jia and J. He: J. Appl. Phys., 2013, vol. 113, pp. 173708.

    Article  Google Scholar 

  27. H. Gao, J. Wang, D. Shu and B. Sun: Scripta Mater., 2006, vol. 54, pp. 19311935.

    Article  Google Scholar 

  28. H. Gao, J. Wang and B. Sun: J. Alloys Compd., 2009, vol. 469, pp. 580586.

    Article  Google Scholar 

  29. H. Gao, J. Wang, D. Shu and B. Sun: J. Alloys Compd., 2007, vol. 438, pp. 268273.

    Article  Google Scholar 

  30. Z.W. Wu and L. Meng: J. Alloys Compd., 2011, vol. 509, pp. 89178921.

    Article  Google Scholar 

  31. L.M. Peng, X.M. Mao, K.D. Xu and W.J. Ding: J. Mater. Proc. Technol., 2005, vol. 166, pp. 193–198.

    Article  Google Scholar 

  32. K.M. Liu, Z.Y. Jiang, J.W. Zhao, J. Zou, Z.B. Chen and D.P. Lu: J. Alloys Compd., 2014, vol. 612, pp. 221226.

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by the National Natural Science Foundation of China (51461018), the China Scholarship Council (2011836024), the Key Program of Natural Science Foundation of Jiangxi Province (20133BAB20008; 20144ACB20013), the Science and Technology Support Plan of Jiangxi Province (20123BBE50112), and the Key Science and Technology Program of Jiangxi Province Bureau of Quality and Technical Supervision (ZJKJ2013003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keming Liu.

Additional information

Manuscript submitted October 7, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, K., Jiang, Z., Zhao, J. et al. Thermal Stability and Properties of Deformation-Processed Cu-Fe In Situ Composites. Metall Mater Trans A 46, 2255–2261 (2015). https://doi.org/10.1007/s11661-015-2791-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2791-x

Keywords

Navigation