Abstract
This paper investigated the thermal stability, tensile strength, and conductivity of deformation-processed Cu-14Fe in situ composites produced by thermo-mechanical processing. The thermal stability was analyzed using scanning electronic microscope and transmission electron microscope. The tensile strength and conductivity were evaluated using tensile-testing machine and micro-ohmmeter, respectively. The Fe fibers in the deformation-processed Cu-14Fe in situ composites undergo edge recession, longitudinal splitting, cylinderization, break-up, and spheroidization during the heat treatment. The Cu matrix experiences recovery, recrystallization, and precipitation phase transition. The tensile strength and conductivity first increase with increasing temperature of heat treatment, reach peak values at different temperatures, and then decrease at higher temperatures. The value of parameter Z of the in situ composite reaches the peak of 2.86 × 107 MPa2 pct IACS after isothermal heat treatment at 798 K (525 °C) for 1 hour. The obtained tensile strength and conductivity of the in situ composites are 907 MPa and 54.3 pct IACS; 868 MPa and 55.2 pct IACS; 810 MPa and 55.8 pct IACS; or 745 MPa and 57.4 pct IACS, at η = 7.8 after isochronal heat treatment for 1 hour.
Similar content being viewed by others
References
K.M. Liu, D.P. Lu, H.T. Zhou, Z.B. Chen, A. Atrens and L. Lu: Mater. Sci. Eng. A, 2013, vol. 584, pp. 114–120.
Z.X. Xie, H.Y. Gao, S.J. Dong, J. Wang, H. Huang and P. Luo: Mater. Trans., 2013, vol. 54, pp. 2075–2078.
J.P. Ge, H. Zhao, Z.Q. Yao and S.H. Liu: Trans. Nonferrous Met. Soc. China, 2005, vol. 15, pp. 971–977.
Z.W. Wu, J.J. Liu, Y. Chen and L. Meng: J. Alloys Compd., 2009, vol. 467, pp. 213–218.
Z.X. Xie, H.Y. Gao, J. Wang and B.D. Sun: Mater. Sci. Eng. A, 2011, vol. 529, pp. 388–392.
H. Fernee, J. Nairn and A. Atrens: J. Mater. Sci., 2001, vol. 36, pp. 2711–2719.
J.S. Song and S.I. Hong: J. Alloys Compd., 2000, vol. 311, pp. 265–269.
Y.S. Kim, J.S. Song and S. I. Hong: J. Mater. Proc. Technol., 2002, vol. 130–131, pp. 278–282.
S.I. Hong, J.S. Song and H.S. Kim: Scr. Mater., 2001, vol. 45, pp. 1295–1300.
K.M. Liu, D.P. Lu, H.T. Zhou, A. Atrens, J. Zou, Y.L. Yang and S.M. Zeng: Mater. Sci. Eng. A, 2010, vol. 527, pp. 4953–4958.
B. Sun, H. Gao, J. Wang and D. Shu: Mater. Lett., 2007, vol. 61, pp. 1002–1006.
Y. Jin, K. Adachi, T. Takeuchi and H.G. Suzuki: J. Mater. Sci., 1998, vol. 33, pp. 1333–1341.
H. Gao, J.Wang, D. Shu and B. Sun: Scr. Mater., 2005, vol. 53, pp. 1105–1109.
J.Q. Deng, X.Q. Zhang, S.Z. Shang, F. Liu, Z.X. Zhao and Y.F. Ye: Mater. Des., 2009, vol. 30, pp. 4444–4449.
J.S. Song, H.S. Kim, C.T. Lee and S.I. Hong: J. Mater. Proc. Technol., 2002, vol. 130–131, pp. 272–277.
J.S. Song, S.I. Hong and H.S. Kim: J. Mater. Proc. Technol., 2001, vol. 113, pp. 610–616.
D. Raabe, S. Ohsaki and K. Hono: Acta Mater., 2009, vol. 57, pp. 5254–5263.
K.M. Liu, D.P. Lu, H.T. Zhou, A. Atrens, Z.B. Chen, J. Zou and S.M. Zeng: J. Alloys Compd., 2010, vol. 500, pp. L22–L25.
D. Raabe and J. Ge: Scripta Mater., 2004, vol. 51, pp. 915–920.
Y. Liu, S. Shao, K.M. Liu, X.J. Yang and D.P. Lu: Mater. Sci. Eng. A, 2012, vol. 531, pp. 141–146.
K.M. Liu, D.P. Lu, H.T. Zhou, Y.L. Yang, A. Atrens and J. Zou: J. Mater. Eng. Perform., 2013, vol. 22, pp. 3723–3727.
Z.X. Xie, H.Y. Gao, Q. Lu, J. Wang and B.D. Sun: J. Alloys Compd., 2010, vol. 508, pp. 320–323.
J.S. Song, S.I. Hong and Y.G. Park: J. Alloys Compd., 2005, vol. 388, pp. 69–74.
J.D. Klein, R.M. Rose, The effect of heat treatment on the superconducting properties of CuNb composites, J. Appl. Phys. 67 (1990) 930–934.
J.S. Carpenter, R.J. Mccabe, S.J. Zheng, T.A. Wynn, N.A. Mara and I.J. Beyerlein: Metall. Mater. Trans. A, 2014, vol. 45A, pp. 2192–2208.
L. Qu, E. Wang, K. Han, X. Zuo, L. Zhang, P. Jia and J. He: J. Appl. Phys., 2013, vol. 113, pp. 173708.
H. Gao, J. Wang, D. Shu and B. Sun: Scripta Mater., 2006, vol. 54, pp. 1931–1935.
H. Gao, J. Wang and B. Sun: J. Alloys Compd., 2009, vol. 469, pp. 580–586.
H. Gao, J. Wang, D. Shu and B. Sun: J. Alloys Compd., 2007, vol. 438, pp. 268–273.
Z.W. Wu and L. Meng: J. Alloys Compd., 2011, vol. 509, pp. 8917–8921.
L.M. Peng, X.M. Mao, K.D. Xu and W.J. Ding: J. Mater. Proc. Technol., 2005, vol. 166, pp. 193–198.
K.M. Liu, Z.Y. Jiang, J.W. Zhao, J. Zou, Z.B. Chen and D.P. Lu: J. Alloys Compd., 2014, vol. 612, pp. 221–226.
Acknowledgments
This project was supported by the National Natural Science Foundation of China (51461018), the China Scholarship Council (2011836024), the Key Program of Natural Science Foundation of Jiangxi Province (20133BAB20008; 20144ACB20013), the Science and Technology Support Plan of Jiangxi Province (20123BBE50112), and the Key Science and Technology Program of Jiangxi Province Bureau of Quality and Technical Supervision (ZJKJ2013003).
Author information
Authors and Affiliations
Corresponding author
Additional information
Manuscript submitted October 7, 2014.
Rights and permissions
About this article
Cite this article
Liu, K., Jiang, Z., Zhao, J. et al. Thermal Stability and Properties of Deformation-Processed Cu-Fe In Situ Composites. Metall Mater Trans A 46, 2255–2261 (2015). https://doi.org/10.1007/s11661-015-2791-x
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11661-015-2791-x