Skip to main content
Log in

The Influence of Heat Treatment on the Microstructure and Machinability of a Prehardened Mold Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The machinability performance of a modified AISI P20 steel, heat treated to have the same hardness but three different microstructures, lower bainite, tempered martensite, and primary spheroidized carbides in a tempered martensite matrix, was studied. The microstructures were characterized using light optical and scanning electron microscopy and X-ray diffraction, and mechanical properties were compared by means of tensile and Charpy V-notch impact tests. The influence of microstructure and the resultant mechanical properties on machinability was studied in the context of single tooth end milling operation. The results showed that the material containing primary spheroidized carbides exhibited a superior machinability at the expense of a marginal loss of tensile strength and impact toughness, with comparable yield strength to that of the material containing tempered martensite. By contrast, the material with bainitic microstructure showed the lowest yield strength and the poorest machinability performance while having the highest uniform elongation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. F. Hippenstiel, ed.: Handbook of Plastic Mould Steels, Edelstahlwerke Buderus AG, 2004.

  2. R.A. Mesquita and C.A. Barbosa: in 18th International Congress of Mechanical Engineering, Ourto Preto, MG, 2005.

  3. F.B. Pickering: in Tool Materials for Molds and Dies, G. Krauss, and H. Nordberg, eds., Colorado School of Mines: St. Charles, Illinois, 1987, pp 3–29.

  4. H. Hoseiny, B. Högman, U. Klement and A. Kinnander: Int. J. Mach. Mach. Mater., 2012, vol. 11, pp. 327-341.

    Google Scholar 

  5. M.E. Finn: Machining, In ASM Handbook, ASM International, Ohio, 1989, pp. 708–32.

  6. H. Hoseiny, B. Högman, H.-O. Andrén, U. Klement, J.-E. Ståhl, A. Thuvander: Int. J. Mater. Res., 2013, vol. 104, pp. 748-761.

    Article  Google Scholar 

  7. H. Chandrasekaran and R. M’Saoubi: CIRP Ann.Manuf. Technol., 2006, vol. 55, pp. 93–96.

  8. D. Firrao, R. Gerosa, A. Ghidini, P. Matteis, G. Mortarino, M. R. Pinasco, B. Rivolta, G. Silva and E. Stagno: Int. J. Fatigue, 2007, vol. 29, pp. 1880-1884.

    Article  Google Scholar 

  9. H. Hoseiny, U. Klement, P. Sotskovszki and J. Andersson: Mater. Des. 2011, vol. 32, pp. 21-28.

    Article  Google Scholar 

  10. M.-Y. Tu, Ch.-A. Hsu, W.-H. Wang and Y.-F. Hsu: Mater. Chem. Phys. 2008, vol. 107, pp. 418-425.

    Article  Google Scholar 

  11. Ch. R. Brooks: Principles of the heat treatment of plain carbon and low alloy steels,,ASM International, OH, United States of America, 1996, pp. 237-242.

    Google Scholar 

  12. H.K.D.H. Bhadeshia: in Proceedings of the International Seminar on Welding of High Strength Pipeline Steels, Araxa, Brazil, 2011, pp. 99–106.

  13. H. K. D. H. Bhadeshia: Bainite in Steel: Transformations, Microstructures and Properties. 2nd ed., The Institute of Materials, London, 2001.

    Google Scholar 

  14. D. Kalish, S. A. Kulin and M. Cohen: J. Met., 1965, pp. 157-164.

    Google Scholar 

  15. B. P. J. Sandvik and H. P. Nevalainen: Met. Technol., 1981, pp. 213-220.

    Article  Google Scholar 

  16. G. V. S. S. Prasad, M. Goerdeler and G. Gottstein: Mater. Sci. Eng. A, 2005, vol. 400-401, pp. 231-233.

    Article  Google Scholar 

  17. M. Goerdeler, M. Crumbach, M. Schneider, G. Gottstein, L. Neumann, H. Aretz and P. Kopp: Mater. Sci. Eng. A, 2004, vol. 387-389, pp. 266-271.

    Article  Google Scholar 

  18. J. Daigne, M. Guttmann and J. P. Naylor: Mater. Sci. Eng., 1982, vol. 56, pp. 1-10.

    Article  Google Scholar 

  19. E. Chang, C. Y. Chang and C. D. Liu: Metall. Mater. Trans. A, 1994, vol. 25, pp. 545-555.

    Article  Google Scholar 

  20. J.R. Davis, ed.: Metals Handbook Desk Edition, ASM International, Materials Park, 2004.

  21. A. Ohmori, Sh. Torizuka and K. Nagai: ISIJ Int., 2004, vol. 44, pp. 1063-1071.

    Article  Google Scholar 

  22. C. García-Mateo and F. G. Caballero: Mater. Trans., JIM, 2005, vol. 46, pp. 1839-1846.

    Article  Google Scholar 

  23. F. G. Caballero, J. Chao, J. Cornide, C. García-Mateo, M. J. Santofimia and C. Capdevila: Mater. Sci. Eng. A, 2009, vol. 525, pp. 87-95.

    Article  Google Scholar 

  24. J. H. Hollomon, L. D. Jaffe, D. E. McCarthy and M. R. Norton: Trans. ASM, 1947, vol. 38, pp. 807-847.

    Google Scholar 

  25. S. A. Herres and C. H. Lorig: Trans. ASM, 1948, vol. 40, pp. 775-812.

    Google Scholar 

  26. G. Sachs, L. J. Ebert and W. F. Brown: Trans. AIME, 1948, vol. 176, pp. 424-435.

    Google Scholar 

  27. E. S. Davenport, E. L. Roff and E. C. Bain: Trans. ASM, 1934, vol. 22, pp. 289-310.

    Google Scholar 

  28. Y. H. Liu: Trans. ASM, 1969, vol. 62, pp. 55-63.

    Google Scholar 

  29. N. A. Abukhshim, P. T. Mativenga and M. A. Sheikh: Int. J. Mach. Tool. Manuf., 2006, vol. 46, pp. 782-800.

    Article  Google Scholar 

  30. M. Bäker: J. Mater. Process. Technol., 2006, vol. 176, pp. 117-126.

    Article  Google Scholar 

  31. W. F. Hosford: Mechanical Behaviour of Materials. 2nd ed., Cambridge University Press, Cambridge, 2010.

    Google Scholar 

  32. E. M. Trent and P. K. Wright: Metal Cutting. 4th ed., Butterworth-Heinemann, Boston, 2000.

    Google Scholar 

  33. T. Childs, K. Maekawa, T. Obikawa and Y. Yamane: Metal Machining, Theory and Applications. Arnold, London, 2000.

    Google Scholar 

  34. W. König and K. Essel: Verlag Stahleisen M.B.H., Düsseldorf, 1973.

  35. S. P. F. C. Jaspers and J. H. Dautzenburg: J. Mater. Process. Technol. 2002, vol. 121, pp. 123-135.

    Article  Google Scholar 

  36. J.-E. Ståhl: Metal Cutting-Theory and Models, Lund University, Lund, 2008.

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the financial support of Uddeholms AB, Vinnova within Vinnpro program and CAPE research center. Rickard Sundström (Sandvik Tooling) is thanked for providing the cutting tools and helpful recommendations regarding machining tests. In addition, the assistance of Staffan Gunnarsson and Lars-Göran Nordh of Uddeholms AB is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Hoseiny.

Additional information

Manuscript submitted April 14, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoseiny, H., Caballero, F.G., M’Saoubi, R. et al. The Influence of Heat Treatment on the Microstructure and Machinability of a Prehardened Mold Steel. Metall Mater Trans A 46, 2157–2171 (2015). https://doi.org/10.1007/s11661-015-2789-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2789-4

Keywords

Navigation