Skip to main content
Log in

Effects of Annealing Temperature on the Electrochemical Hydrogen Storage Behaviors of La-Mg-Ni-Based A2B7-Type Electrode Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

In an attempt to improve the cyclic stability of La-Mg-Ni-based A2B7-type electrode alloys, La0.8Mg0.2Ni3.3Co0.2Si x (x = 0−0.2) electrode alloys were fabricated by casting and annealing, and the effects of annealing temperature on the structures and electrochemical hydrogen storage performances of the alloys were systematically investigated. The results indicate that the as-cast and annealed alloys exhibit multiple structures that contain two major phases, (La,Mg)2Niwith a Ce2Ni7-type hexagonal structure and LaNiwith a CaCu5-type hexagonal structure; and one residual phase, LaNi3. Both the lattice constants and cell volumes of the two major phases increase with the increasing annealing temperature. Instead of altering the phase composition, the annealing treatment causes the abundances of these two major phases to vary. Based on electrochemical measurements, the cycle stabilities of the alloys are found to be considerably improved by annealing, and the alloy’s discharge capacity yields a maximum value with the increasing annealing temperature due to the variation in phase abundance and the homogenization of the composition, respectively. The influence of the annealing treatment on the electrochemical kinetics of the alloys is associated with the alloy’s composition; the electrochemical kinetics of the Si-free alloy become slower with the increasing annealing temperature, whereas those of the Si-added alloys first mount up and then go down under the same conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. B. Sakintuna, F. Lamari-Darkrim, and M. Hirscher: Int. J. Hydrogen Energy, 2007, vol. 32, pp. 1121−40.

    Article  Google Scholar 

  2. J. J. G. Willems and K. H. J. Buschow: J. Less-Common Met., 1987, vol. 129, pp. 13−30.

    Article  Google Scholar 

  3. S. R. Ovshinsky, M. A. Fetcenko, and J. Ross. Science, 1993, vol. 260, pp. 176−81.

    Article  Google Scholar 

  4. M. Tukahara, T. Kamiya, K. Takahashi, A. Kawabata, S. Sakurai, J. Shi, H. T. Takeshita, N. Kuriyama, and T. Sakai: J. Electrochem. Soc., 2000, vol. 147, pp. 2941−44.

    Article  Google Scholar 

  5. D. Sun, H. Enoki, F. Gingl, and E. Akiba: J. Alloys Comp., 1999, vol. 285, pp. 279−83.

    Article  Google Scholar 

  6. X. F. Li, L. Z. Wang, H. C. Dong, Y. H. Song, and H. D. Shang: J. Alloys Compd., 2012, vol. 510, pp. 114–18.

    Article  Google Scholar 

  7. B. Knosp, L. Vallet, and P. Blanchard: J. Alloys Compd., 1999, vol. 293–295, pp. 770–74.

    Article  Google Scholar 

  8. X. P. Song, P. Pei, P. L. Zhang, and G. L. Chen: J. Alloys Compd., 2008, vol. 455, pp. 392–97.

    Article  Google Scholar 

  9. J. H. Li, B. Z. Liu, S. M. Han, L. Hu, X. Zhao, and M. Z. Wang: Rare Met., 2011, vol. 30, pp. 458–463.

    Article  Google Scholar 

  10. Y. H. Zhang, C. Zhao, T. Yang, H. W. Shang, C. Xu, and D. L. Zhao: J Alloys Compd., 2013, vol. 555, pp. 131–37.

    Article  Google Scholar 

  11. K. Kadir, T. Sakai, and I. Uehara: J. Alloys Compd., 1997, vol. 257, pp. 115−21.

    Article  Google Scholar 

  12. T. Kohno, H. Yoshida, F. Kawashima, T. Inaba, I. Sakai, M. Yamamoto, and M. Kanda: J. Alloys Compd., 2000, vol. 311, pp. L5−L7.

    Article  Google Scholar 

  13. Y. F. Li, Y. H. Cao, L. Huang, M. X. Gao, and H. G. Pan: J. Alloys Compd., 2011, vol. 509, pp. 675–86.

    Article  Google Scholar 

  14. Y. F. Liu, H. G. Pan, M. X. Gao, and Q. D. Wang: J. Mater. Chem., 2011, vol. 21, pp. 4743–55.

    Article  Google Scholar 

  15. Y. F. Liu, H. G. Pan, M. X. Gao, R. Li, and Y. Q. Lei: J. Alloys Compd., 2004, vol. 376, pp. 304–13.

    Article  Google Scholar 

  16. Y. H. Zhang, B. W. Li, H. P. Ren, Y. Cai, X. P. Dong, and X. L.Wang: J. Alloys Compd., 2008, vol. 458, pp. 340–45.

    Article  Google Scholar 

  17. X. Q. Shen, Y. G. Chen, M. D. Tao, C. L. Wu, G. Deng, and Z. Z. Kang: Int. J. Hydrogen Energy, 2009, vol. 34, pp. 3395–403.

    Article  Google Scholar 

  18. Y. H. Zhang, T. Yang, Y. Cai, Z. H. Hou, H. P. Ren, and D. L. Zhao: Rare Met. 2012, vol. 31, pp. 457–65.

    Article  Google Scholar 

  19. X. Q. Shen, Y. G. Chen, M. D. Tao, C. L. Wu, G. Deng, and Z. Z. Kang: Int. J. Hydrogen Energy, 2009, vol. 34, pp. 2661–69.

    Article  Google Scholar 

  20. Z. W. Dong, Y. M. Wu, L. Q. Ma, L. D. Wang, X. D. Shen, and L. M.Wang: Int. J. Hydrogen Energy, 2011, vol. 36, pp. 3050–55.

    Article  Google Scholar 

  21. X. D. Wei, H. Dong, Y. G. Liu, P. Zhang, J. W. Zhu, and G. Yu: J. Alloys Compd., 2009, vol. 481, pp. 687–91.

    Article  Google Scholar 

  22. T. Z. Huang, X. X. Yuan, J. M. Yu, Z. Wu, J. T. Han, G. X. Sun, N. X. Xu, and Y. H. Zhang: Int. J. Hydrogen Energy, 2012, vol. 37, pp. 1074–79.

    Article  Google Scholar 

  23. Y. H. Zhang, B. W. Li, H. P. Ren, Y. Cai, X. P. Dong, and X. L. Wang: Int. J. Hydrogen Energy, 2007, vol. 32, pp. 4627–34.

    Article  Google Scholar 

  24. M. Dornheim, S. Doppiu, G. Barkhordarian, U. Boesenberg, T. Klassen, O. Gutfleisch, and R. Bormann: Scripta Mater., 2007, vol. 56, pp. 841–46.

    Article  Google Scholar 

  25. T. Sakai, T. Hazama, H. Miyamura, N. Kuriyama, A. Kato, and H. Ishikawa: J. Less-Common Met., 1991, vol. 172–174, pp. 1175–84

    Article  Google Scholar 

  26. J. J. G. Willems: Philips J. Res., 1984, vol. 39, pp. 1–94.

    Google Scholar 

  27. T. Sakai, K. Oguro, H. Miyamura, N. Kuriyama, A. Kato, H. Ishikawa and C. Iwakura: J. Less-Common Met., 1990, vol. 161, pp. 193–202.

    Article  Google Scholar 

  28. F. Meli, A. Zuettel, and L. Schlapbach: J. Alloys Compd., 1992, vol. 190, pp. 17–24.

    Article  Google Scholar 

  29. B. V. Ratnakumar, C. Witham, Jr. R. C. Bowman, A. Hightower, and B. Fultz: J. Electrochem. Soc., 1996, vol. 143, pp. 2578–84.

    Article  Google Scholar 

  30. N. Kuriyama, T. Sakai, H. Miyamura, I. Uehara, H. Ishikawa, and T. Iwasaki: J. Alloys Compd., 1993, vol. 202, pp. 183–97.

    Article  Google Scholar 

  31. G. Zheng, B. N. Popov, and R. E. White, J. Electrochem. Soc., 1995, vol. 142, pp. 2695–98.

    Article  Google Scholar 

  32. X. Y. Zhao, Y. Ding, L. Q. Ma, L. Y. Wang, M. Yang, and X. D. Shen: Int. J. Hydrogen Energy, 2008, vol. 33, pp. 6727–33.

    Article  Google Scholar 

  33. F. Feng, and D. O. Northwood: J. Power Sources, 2004, vol. 136, pp. 346–50.

    Article  Google Scholar 

  34. N. Cui, and J. L. Luo: Int. J. Hydrogen Energy, 1999, vol. 24, pp. 37–42.

    Article  Google Scholar 

  35. D. H. Xie, P. Li, C. X. Zeng, J. W. Sun, and X. H. Qu: J. Alloys Compd., 2009, vol. 478, pp. 96–102.

    Article  Google Scholar 

Download references

Acknowledgments

This work is financially supported by the National Natural Science Foundations of China (Nos. 51161015 and 51371094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanghuan Zhang.

Additional information

Manuscript submitted February 19, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Yuan, Z., Zhai, T. et al. Effects of Annealing Temperature on the Electrochemical Hydrogen Storage Behaviors of La-Mg-Ni-Based A2B7-Type Electrode Alloys. Metall Mater Trans A 46, 2294–2303 (2015). https://doi.org/10.1007/s11661-015-2788-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2788-5

Keywords

Navigation