Skip to main content
Log in

Effect of Chromium Content on the Oxidation Behavior of Ni-Cr Model Alloys in Superheated Steam

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present study investigated the oxidation behavior of Ni-xCr model alloys (14 ≤ x ≤ 30 wt pct) in steam at 973 K (700 °C), with particular emphasis on the influence of chromium content. Mirror polishing was employed to reduce the hardened layer, thereby avoiding the synergetic effect with dislocations in the subsurface. To elucidate the oxidation behavior, weight gain measurements and the meticulous characterization of the oxide scale were performed. The optimal Cr content (24 wt pct) corresponded to an oxidation rate slower than the parabolic rate due to the growth of a protective Cr oxide layer. Increasing the Cr content above the optimal amount led to the degradation of oxidation resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. G.J. Silvestri: Eddystone Station, 325 MW Generating Unit 1-A Brief History, ASME, March 2003.

  2. R. Viswanathan: U.S. Program on Materials Technology for Ultrasupercritical Coal Power Plants, Electric Power Research Institute, Palo Alto, CA, March 2006.

  3. P.S. Weitzel: Steam Generator for Advanced Ultra-Supercritical Power Plants 700 to 760C, ASME 2011 Power Conference Denver, Colorado, July 12–14, 2011.

  4. C. Jang, D. Kim, D. Kim, I. SAH, W.-S. Ryu and Y-S. Yoo: Trans. Nonferr. Metal. Soc., 2011, vol. 21, pp. 1542–31.

  5. H. Abe, S.M. Hong, and Y. Watanabe: Proceedings of the 21st International Conference on Nuclear Engineering, 2013.

  6. C. Wagner: J. Electrochem. Soc., 1952, vol. 99, pp. 369–80.

    Article  Google Scholar 

  7. N.K. Das, K. Suzuki, K. Ogawa and T. Shoji: Corros. Sci., 2009, vol. 51, pp. 908–13.

    Article  Google Scholar 

  8. C. Ostwald and H.J. Grabke: Corros. Sci., 2004, vol. 46, pp. 1113-1127.

    Article  Google Scholar 

  9. H.J. Grabke. E.M. Müller-Lorenz, S. Strauss, E. Pippel and J. Woltersdorf: Oxid. Met., November 1998, vol. 50, pp. 241–54.

    Article  Google Scholar 

  10. L. Cooper, S. Benhaddad, A. Wood and D.G. Ivey: J. Power Sources, September 2008, vol. 184, pp. 220–28.

    Article  Google Scholar 

  11. J.M. Rakowski, G.H. Meier and F.S. Pettit: Scripta Mater., December 1996, vol. 35, pp. 1417–22.

    Article  Google Scholar 

  12. S. Cissé, L. Laffont, B. Tanguy, M. C Lafont and E. Andrieu: Corros. Sci., 2012, vol. 56, pp. 209–16.

    Article  Google Scholar 

  13. M. Warzee, J. Hennaut, M. Maurice, C. Sonnen, J. Waty and Ph. Berge: J. Electrochem. Soc., 1965, vol. 112, pp. 670–74.

    Article  Google Scholar 

  14. F. Carrette: Thesis, Institut National Polytechnique de Toulouse, Toulouse, France, 2002.

  15. E. Essuman and W.J. Quadakkers: Corros. Sci., 2008, vol. 50, pp. 1753–60.

    Article  Google Scholar 

  16. P. Moulin, A.M. Huntz and P. Lacombe: Acta Metall. Mater., 1979, vol. 28, pp. 745–56.

    Article  Google Scholar 

  17. A.T. Fromhold Jr: J. Chem. Phys., March 1964, vol. 41, pp. 509–14.

    Article  Google Scholar 

  18. A. Nicolas, E. Aublant, E. Feulvarch and K. Wolski: Def. Diff. Forum, 2012, vol. 323–325, pp. 295–300.

  19. S. Lozano-Perez, K. Kruska, I. Iyengar, T. Terachi and T. Yamada: Corros. Sci., 2012, vol. 56, pp. 78–85.

    Article  Google Scholar 

  20. R.J. Pearce and R.k. Wild: J. Nucl. Mater., 1980, vol. 91, pp. 156–70.

    Article  Google Scholar 

  21. N. Otsuka and H. Fujikawa: Corros. Sci, 1991, vol. 47, pp. 240–48.

    Article  Google Scholar 

  22. W. Gao, Z. Li, Z. Wu, S. Li and Y. He: Intermetallics, March 2002, vol. 10, pp. 263–70.

    Article  Google Scholar 

  23. A. Nicolas: Thesis, Ecole National Superieur des Mines, Saint-Etienne, France, 2012.

  24. E. Essuman, G.H. Meier, J. Zurek, M. Hansel, L. Singheiser and W.J. Quadakkers: Scripta Mater., 2007, vol. 57, pp. 845–48.

    Article  Google Scholar 

Download references

Acknowledgement

This work was partly supported by the JSPS Core-to-CoreProgram, A. Advanced Research Networks, “International research core on smart layered materials and structures for energy saving”. This work was supported also by CNRS LIA “Engineering and science Lyon-Tohoku laboratory (ELyT Lab)” (INSIS). Authors are very grateful to Dr. Takamichi Miyazaki for TEM analyses and his helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yutaka Watanabe.

Additional information

Manuscript submitted September 14, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamdani, F., Abe, H., Ter-Ovanessian, B. et al. Effect of Chromium Content on the Oxidation Behavior of Ni-Cr Model Alloys in Superheated Steam. Metall Mater Trans A 46, 2285–2293 (2015). https://doi.org/10.1007/s11661-015-2786-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2786-7

Keywords

Navigation