Skip to main content
Log in

Quantitative Analysis of Heterogeneous Microstructure and Diversified Strengthening Mechanisms in Spark Plasma Sintered Molybdenum Disilicide

  • Communication
  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Molybdenum disilicide (MoSi2) was in situ synthesized by spark plasma sintering into fully dense bulk material. Electron backscatter diffraction revealed that over the range from the center to periphery of the cylindrical sample, the microstructure is heterogeneously constituted by gradually refined MoSi2 grains and increasing amounts of Mo5Si3 impurity phase. The diversified strengthening mechanisms are primarily attributed to the Peierls–Nabarro stress in MoSi2 matrix, the Hall–Petch strengthening effect, and thermal mismatch stress between Mo5Si3 and MoSi2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. H. Shimizu, M. Yoshinaka, and K. Hirota: Mater. Res. Bull., 2002, vol. 37, pp. 1557-63.

    Article  Google Scholar 

  2. Q.D. Hu, P. Luo, and Y.W. Yan: J. Alloy Compd., 2008, vol. 459, pp. 163-68.

    Article  Google Scholar 

  3. G. Cabouroa, S. Le Gallet, S. Chevalier, E. Gaffet, Yu. Grin, and F. Bernard: Powder Tech., 2011, vol. 208, pp. 526-31.

    Article  Google Scholar 

  4. S.W. Jo, M.D. Ka, and Y.S. Kim: Acta Mater., 1996, vol. 44, pp. 4317-26.

    Article  Google Scholar 

  5. D.A. Hardwick, P.L. Martin, and R.J. Moores: Scripta Metall. Mater., 1992, vol. 27, pp. 391-94.

    Article  Google Scholar 

  6. J.R. Jokisaari, S. Bhaduri, and S.B. Bhaduri: Mater. Sci. Eng. A, 2002, vol. 323, pp. 478-83.

    Article  Google Scholar 

  7. K. Vanmeensel, A. Laptev, J. Hennicke, J. Vleugels, and O. Van der Biest: Acta Mater., 2005, vol. 53, pp. 4379-88.

    Article  Google Scholar 

  8. A. Zavaliangos, J. Zhang, M. Krammerb, and J.R. Groza: Mater. Sci. Eng. A, 2004, vol. 379, pp. 218-28.

    Article  Google Scholar 

  9. Q.D. Hu, P. Luo, Y.W. Yan, and J.G. Li: Int. J. Refract. Met. H., 2011, vol. 29, pp. 470-77.

    Article  Google Scholar 

  10. R.W. Rice: Mechanical Properties of Ceramics and Composites: Grain and Particle Effects, Marcel-Dekker, New York, 2000.

    Book  Google Scholar 

  11. F.W. Vadhldiek and S.A. Mersol: J. Less-common Met., 1968, vol. 15, pp. 165–76.

    Article  Google Scholar 

  12. P.H. Boldt, J.D. Embury and G.C. Weatherly: Mater. Sci. Eng. A, 1992, vol. 155, pp. 251–58.

    Article  Google Scholar 

  13. S.A. Maloy, A.H. Heuer, J.J. Lewandowski and T.E. Mitchell: Acta Metall. Mater., 1992, vol. 40, pp. 3159–65.

    Article  Google Scholar 

  14. S.A. Maloy, T.E. Mitchell, and A.H. Heuer: Acta Metall. Mater., 1995, vol. 42, pp. 657-68.

    Article  Google Scholar 

  15. O. Ural, J.J. Petrovic, D. Carter and T.E. Mitchell: J. Am. Ceram. Soc., 1992, vol. 73, pp. 1752–57.

    Google Scholar 

  16. J.K. Mackenzie: Acta Metall., 1964, vol. 12, pp. 223-25.

    Article  Google Scholar 

  17. M. Kubota and B.P. Wynne: Scripta Mater., 2007, vol. 57, pp. 719-22.

    Article  Google Scholar 

  18. K. Ito, H. Inui, Y. Shirai, and M. Yamaguchi: Philo. Mag. A, 1995, vol. 72, pp. 1075-97.

    Article  Google Scholar 

  19. D.P. Mason and D.C. Van Aken: Scripta Metall. Mater., 1993, vol. 28, pp. 185-89.

    Article  Google Scholar 

  20. D.G. Morris, M. Leboeuf, and M.A. Morris: Mater. Sci. Eng. A, 1998, vol. 251, pp. 262-68.

    Article  Google Scholar 

  21. R. Gibala, A.K. Ghosh, D.C. Van Aken, D.J. Sroloviz, A. Basu, H. Chang, D.P. Mason, and W. Yang: Mater. Sci. Eng. A, 1992, vol. 155, pp. 147–58.

    Article  Google Scholar 

  22. R. Tiwari and H. Herman: Mater. Sci. Eng. A, 1992, vol. 155, pp. 95–100.

    Article  Google Scholar 

  23. S. Maloy, H. Heuer, J. Lewandoski, and J. Petrovic: J. Am. Ceram. Soc., 1991, vol. 74, pp. 2704–06.

    Article  Google Scholar 

  24. R. K. Wade: J. Am. Ceram. Soc., 1992, vol. 75, pp. 1682–84.

    Article  Google Scholar 

  25. R.B. Schwartz, S.R. Srinivasan, J.J. Petrovic, and C.J. Maggiore: Mater. Sci. Eng. A, 1992, vol. 155, pp. 75–83.

    Article  Google Scholar 

  26. A. Bhattacharya and J. Petrovic: J. Am. Ceram. Soc., 1991, vol. 74, pp. 2700–03.

    Article  Google Scholar 

  27. H. Zhou, J. Li, and D. Yi: ISRN Mater. Sci. DOI:10.5402/2012/180750.

  28. D.Y. Oha, H.C. Kima, J.K. Yoonb, and I.J. Shon: J. Alloy Compd., 2005, vol. 395, pp. 174-80.

    Article  Google Scholar 

  29. D. Yi and C. Li: Mater. Sci. Eng. A, 1999, vol. 261, pp. 89-98.

    Article  Google Scholar 

  30. W.W. Gerberich, J. Michler, W.M. Mook, R. Ghisleni, F. Ostlund, D.D. Stauffer, and R. Ballarini: J. Mater. Res., 2009, vol. 24, pp. 898-906.

    Article  Google Scholar 

  31. M.A. Muñoz-Morris, C. Garcia Oca, and D.G. Morris: Acta Mater., 2002, vol. 50, pp. 2825–36.

    Article  Google Scholar 

  32. J.N. Wang: Acta Mater., 1996, vol. 44, pp. 1541-46.

    Article  Google Scholar 

  33. Y. Kamimura, K. Edagawa and S. Takeuchi: Acta Mater., 2013, vol. 61, pp. 294-309.

    Article  Google Scholar 

  34. P. Luo, D.T. McDonald, W. Xu, S. Palanisamy, M.S. Dargusch, and K. Xia: Scripta Mater., 2012, vol. 66, pp. 785-88.

    Article  Google Scholar 

  35. A. Wasilkowska, M. Bartsch, F. Stein, M. Palm, G. Sauthoff, and U. Messerschmidtet: Mater. Sci. Eng. A, 2004, vol. 381, pp. 1–15.

    Article  Google Scholar 

  36. J. Amodeo, B. Devincre, P. Carrez, and P. Cordier: Mech. Mater., 2014, vol. 71, pp. 62-73.

    Article  Google Scholar 

  37. P. Luo and Q.D. Hu: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 1651-55.

    Article  Google Scholar 

  38. R.W.K. Honeycombe: The Plastic Deformation of Metals, Edward Arnold, London, 1968.

    Google Scholar 

  39. J.Q. Su, T.W. Nelson, and C.J. Sterling: Philos. Mag., 2006, vol. 86, pp. 1-24.

    Article  Google Scholar 

  40. M.A. Meyers and K.K. Chawla: Mechanical Behavior of Materials, 2nd ed., Cambridge University Press, Cambridge, 2009.

    Google Scholar 

  41. J. Rösler, H. Harders, and M. Bäker: Mechanical Behaviour of Engineering Materials: Metals, Ceramics, Polymers, and Composites. Springer, Berlin, 2007.

    Google Scholar 

  42. F. Tang, I.E. Anderson, T. Gnaupel-Herold, and H. Prask: Mater. Sci. Eng. A, 2004, vol. 383, pp. 362-73.

    Article  Google Scholar 

  43. F. Chu, D.J. Thoma, K.J. McClellan, and P. Peralta: Mater. Sci. Eng. A, 1999, vol. 261, pp. 44-52.

    Article  Google Scholar 

  44. D.C. Dunand and A. Mortensen: Acta Metall. Mater., 1991, vol. 39, pp. 127-39.

    Article  Google Scholar 

Download references

This study was supported by the National Natural Science Foundation of China (51374144), Shanghai Municipal Natural Science Foundation (13ZR1420600), Shanghai Rising-Star Program (14QA1402300), and the National Basic Research Program of China (2011CB012900). QH acknowledges the financial support of the China Scholarship Council (2011831180). The support of EBSD by Instrumental Analysis Centre, Shanghai Jiao Tong University, is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peng Luo.

Additional information

Manuscript submitted March 26, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Q., Luo, P., Yan, Y. et al. Quantitative Analysis of Heterogeneous Microstructure and Diversified Strengthening Mechanisms in Spark Plasma Sintered Molybdenum Disilicide. Metall Mater Trans A 46, 1443–1449 (2015). https://doi.org/10.1007/s11661-015-2785-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2785-8

Keywords

Navigation