Skip to main content
Log in

Bimodal Grain Size Distribution Enhances Strength and Ductility Simultaneously in a Low-Carbon Low-Alloy Steel

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Low-carbon low-alloy steel specimens were quenched, then cold rolled, and finally annealed. Electron backscatter diffraction (EBSD) micrographs revealed a bimodal grain structure where ultra-fine grain structures with low-angle grain boundaries are alternating with regions of larger grains. The average total dislocation density was measured by X-ray line profile analysis, whereas the geometrically necessary dislocation density was obtained from the analysis of EBSD data. Using the combination of the Hall–Petch and Taylor equations, a good correlation was found between the total dislocation density and the measured flow stress in the different states of the alloy. The difference in evolutions of the total and the geometrically necessary component of the dislocation densities is discussed in terms of the successive processes of quenching, rolling, and annealing of the alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. T.K. Sooi, P.S. Green, R. Sause, and J.M. Ricles: Proc. Int. Symp. High Perform. Steels Struct. Appl., Cleveland, OH. 1995, pp. 35-43.

  2. G.I. Taylor: Proc. Roy. Soc., 1934, vol. A145, pp. 362-87.

    Article  Google Scholar 

  3. E.O. Hall: Proc. Phys. Soc., 1951, vol. 64B, pp. 747-53.

    Article  Google Scholar 

  4. N.J. Petch, J. Iron Steel Inst., 1953, vol.174, pp. 25-8.

    Google Scholar 

  5. V.M. Segal, Mater. Sci. Eng., 1995, vol. A197, pp. 157-64.

    Article  Google Scholar 

  6. R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov, Prog. Mater. Sci., 2000, vol. 45, pp. 103-189.

    Article  Google Scholar 

  7. Y. Saito, H. Utsunomiya, N. Tsuji, T. Sakai, Acta Mater. 1999, vol. 47, pp. 579–583.

    Article  Google Scholar 

  8. N. Tsuji, Y. Saito, S.-H. Lee, Y. Minamino, Adv. Eng. Mater., 2003, vol 5 pp. 338- 344.

    Article  Google Scholar 

  9. A. Zhilyaev, T. Langdon, Prog. Mater. Sci., 2008, vol. 53, pp. 893-979.

    Article  Google Scholar 

  10. J.R. Weertman, D. Farkas, K. Hemker, H. Kung, M. Mayo, R. Mitra, H. Swygenhoven, MRS Bull., 1999, vol. 24 pp. 44-50.

    Article  Google Scholar 

  11. C.C. Koch, J. Metastable Nanocryst. Mater., 2003, vol. 18, pp. 9.

    Article  Google Scholar 

  12. M.F. Tambwe, D.S. Stone, J. Mater. Res., 1999, vol. 14, pp. 407-17.

    Article  Google Scholar 

  13. S.N. Mathaudhu, K.T. Hartwig, Mater. Sci. Eng., 2006, vol. A426, pp. 128-42.

    Article  Google Scholar 

  14. X.L. Wu, E. Ma, Mater. Sci. Eng., 2008, vol. A483, pp. 84-86.

    Article  Google Scholar 

  15. M.B. Kerber, M.J. Zehetbauer, E. Schafler, F.C. Spieckermann, S. Bernstorff, T. Ungár, JOM, 2011, vol. 63, pp. 61-70.

    Article  Google Scholar 

  16. T. Ungár, L.Li, G.Tichy, W.Pantleon, H.Choo, P.K.Liaw, Scripta Mater., 2011, vol. 64, pp. 876-79.

    Article  Google Scholar 

  17. B. Joni, E. Schafler, M. Zehetbauer, G. Tichy, T. Ungár, Acta Mater., 2013, vol. 61, pp. 632-42.

    Article  Google Scholar 

  18. W. Skrotzki, A. Eschke, B. Jóni, T. Ungár, L.S. Tóth, Y. Ivanisenko, L. Kurmanaeva, Acta Mater., 2013, vol. 61, pp. 7271-84.

    Article  Google Scholar 

  19. S. Takebayashi, T. Kunieda, N. Yoshinaga, K. Ushioda, S. Ogata, ISIJ Internat., 2010, vol. 50, pp. 875-882.

    Article  Google Scholar 

  20. R. Ueji, N. Tsuji, Y. Minamino, Y. Koizumi, Acta Mater., 2002, vol. 50, pp. 4177- 4189.

    Article  Google Scholar 

  21. H. Azizi-Alizamini, M. Militzer, W.J. Poole, Scripta Mater., 2007, vol. 57, pp. 1065- 1068.

    Article  Google Scholar 

  22. G. Krauss, Mater. Sci. Eng., 1999, vol. A273–275, pp. 40–57.

    Article  Google Scholar 

  23. C. Wang, M. Wang, J. Shi, W. Hui, H. Dong, J. Mater. Sci. Technol., 2007, vol. 23, pp. 659-64.

    Google Scholar 

  24. L.P. Kubin, A. Mortensen, Scripta Mater., 2003, vol. 48, pp. 119–25.

    Article  Google Scholar 

  25. H. Gao, Y. Huang, W.D. Nix, J.W. Hutchinson, J. Mech. Phys. Solids, 1999, vol. 47, pp. 1239-63.

    Article  Google Scholar 

  26. J.F. Nye, Acta Metall., 1953, vol. 1, pp. 153–62.

    Article  Google Scholar 

  27. B.S. El-Dasher, B.L. Adams, A.D. Rollett, Scripta Mater., 2003, vol. 48, pp. 141-5.

    Article  Google Scholar 

  28. D.P. Field, P. Trivedi, S.I. Wright, M. Kumar, Ultramicroscopy, 2005, vol. 103, pp. 33-39.

    Article  Google Scholar 

  29. W. Pantleon, Scripta Mater., 2008, vol. 58, pp. 994–7.

    Article  Google Scholar 

  30. T. Ungár, S. Ott, P. G. Sanders, A. Borbély, J. R.Weertman, Acta Mater., 1998, vol. 46 pp. 3693-9.

    Article  Google Scholar 

  31. B.E. Warren, X-ray diffraction, Dover Publ. New York, 1996.

    Google Scholar 

  32. M. Wilkens: Fundamental Aspects of Dislocation Theory, vol. II. No. 317, J.A. Simmons, R. de Wit, R. Bullough, eds., Nat. Bur. Stand. Spec. Publ. 1970, Washington, DC, pp. 1195-1221.

  33. T. Ungár, I. Dragomir, Á. Révész, A. Borbély, J. Appl. Cryst., 1999, vol. 32, 992- 1002.

    Article  Google Scholar 

  34. T. Ungár, G. Tichy, Phys. Stat. Sol., 1999, a147, pp. 425-34.

    Article  Google Scholar 

  35. G. Ribárik, T. Ungár, Mater. Sci. Eng., 2010, vol. A528, pp. 112–121.

    Article  Google Scholar 

  36. W.C. Hinds, Aerosol Technology: Properties, Behavior and Measurement of Airbone Particles, 1982, Wiley, New York.

    Google Scholar 

  37. A. K. De, D. C. Murdock, M. C. Mataya, J. G. Speer, D. K. Matlock, Scripta Mater., 2004, vol. 50, pp. 1445-1449.

    Article  Google Scholar 

  38. M.L. Martinez-Perez, F.J. Mompean, J. Ruiz-Hervias, C.R. Borlado, J.M. Atienza, M. Garcia-Hernandez, M. Elices, J. Gil-Sevillano, R.L. Peng, T. Buslaps, Acta Mater., 2004, vol. 52, pp. 5303–5313.

    Article  Google Scholar 

  39. G.K. Williamson, W.H. Hall, Acta metall., 1953, vol. 1, pp. 22-31.

    Article  Google Scholar 

  40. T. Ungár, A. Borbély, Appl. Phys. Lett., 1996 69, 3173–5.

    Article  Google Scholar 

  41. S. Harjo, Y. Tomota, P. Lukas, D. Neov, M. Vrana, P. Mikula, M. Ono, Acta mater., 2001, vol. 49, pp. 2471-2479.

    Article  Google Scholar 

  42. K. An, H. Skorpenske, A.D. Stoica, D. Ma, X.-L. Wang, E. Cakmak, Metall. Mater. Trans.., 2011, vol. 42A, pp. 95-99.

    Article  Google Scholar 

  43. H. Conrad, K. Jung, Mater. Sci. Eng. 2005, vol. A391, pp. 272-84.

    Article  Google Scholar 

  44. I. Dubravina, M. Zehetbauer, E. Schafler, I. Alexandrov., Mater. Sci. Eng., 2004, vol. A387-389, pp. 817-21.

    Article  Google Scholar 

  45. X. Zhang, N. Hansen, Y. Gao, X. Huang, Acta Mater., 2012, vol. 60 pp. 5933-43.

    Article  Google Scholar 

  46. H. Kitahara, R. Ueji, N. Tsuji, Y. Minamino, Acta Mater., 2006, vol. 54, pp. 1279-88.

    Article  Google Scholar 

  47. D.P. Field, C.C. Merriman, N. Allain-Bonasso, F. Wagner, Model. Simul. Mater. Sci. Eng., 2012, vol. 20, pp. 024007.

    Article  Google Scholar 

  48. K. Maruyama, K. Sawada, J.-I. Koike, ISIJ International, 2001, vol. 41, pp. 641-53.

    Article  Google Scholar 

  49. L. Li, T. Ungár, Y.D. Wang, J.R. Morris, G. Tichy, J. Lendvai, Y.L. Yang, Y. Ren, H. Choo, P.K. Liaw, Acta Mater., 2009, vol. 57, pp. 4988-5000.

    Article  Google Scholar 

  50. B. Sestak, A. Seeger, Z. Metallkde., 1978, vol. 69, pp. 425-32.

    Google Scholar 

  51. Y. Wang, M. Chen, F. Zhou, E. Ma, Lett. Nature, 2002, vol. 419, pp. 912-5.

    Article  Google Scholar 

  52. R.Z. Valiev, Nature Mater., 2004, vol. 3, pp. 511-6.

    Article  Google Scholar 

  53. L.-A Norstrom, Scand. J. Metall., 1976, vol. 5, pp. 159-165.

    Google Scholar 

  54. R.W. Armstrong, Acta Mech., 2014, vol. 225, pp. 1013-28.

    Article  Google Scholar 

Download references

Acknowledgments

The work is supported by the TÁMOP-4.2.2.A-11/1/KONV-2012-0027 project. The project is co-financed by the European Union and the European Social Fund. This work is connected to the scientific program of the “Development of quality-oriented and harmonized R + D + I strategy and functional model at BME” project. This Project is supported by the New Hungary Development Plan (Project ID: TÁMOP-4.2.1/B-09/1/KMR-2010-0002). T.U. is grateful to the OTKA K-112648 Project for partial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Ungár.

Additional information

Manuscript submitted July 6, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Szabó, P.J., Field, D.P., Jóni, B. et al. Bimodal Grain Size Distribution Enhances Strength and Ductility Simultaneously in a Low-Carbon Low-Alloy Steel. Metall Mater Trans A 46, 1948–1957 (2015). https://doi.org/10.1007/s11661-015-2783-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2783-x

Keywords

Navigation