Skip to main content
Log in

Cooling Rate Determination in Additively Manufactured Aluminum Alloy 2219

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

Metallic additive manufacturing processes generally utilize a conduction mode, welding-type approach to create beads of deposited material that can be arranged into a three-dimensional structure. As with welding, the cooling rates in the molten pool are relatively rapid compared to traditional casting techniques. Determination of the cooling rate in the molten pool is critical for predicting the solidified microstructure and resultant properties. In this experiment, wire-fed electron beam additive manufacturing was used to melt aluminum alloy 2219 under different thermal boundary conditions. The dendrite arm spacing was measured in the remelted material, and this information was used to estimate cooling rates in the molten pool based on established empirical relationships. The results showed that the thermal boundary conditions have a significant effect on the resulting cooling rate in the molten pool. When thermal conduction is limited due to a small thermal sink, the dendrite arm spacing varies between 15 and 35 µm. When thermal conduction is active, the dendrite arm spacing varies between 6 and 12 µm. This range of dendrite arm spacing implies cooling rates ranging from 5 to 350 K/s. Cooling rates can vary greatly as thermal conditions change during deposition. A cooling rate at the higher end of the range could lead to significant deviation from microstructural equilibrium during solidification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. I. Gibson, D.W. Rosen, B. Stucker: Additive Manufacturing Technologies, Springer, New York, NY, 2010.

    Book  Google Scholar 

  2. K.M.B. Taminger and R.A. Hafley: Proceedings of the 3rd Annual Automotive Composites Conference, Sept. 9-10, Troy, MI, 2003, pp. 9–10.

  3. B.H. Alexander and F. N. Rhines: Trans. AIME, 1950, vol. 188, pp. 1267-1273.

    Google Scholar 

  4. A.B. Michael and M.B. Bever: Trans. AIME, 1954, vol. 200, pp. 47-56.

    Google Scholar 

  5. J.A. Horwath and L.F. Mondolfo: Acta Metall., 1962, vol. 10, pp. 1037-1042.

    Article  Google Scholar 

  6. T.F. Bower, H.D. Brody, and M.C. Flemings: Trans. AIME, 1966, vol. 236, pp. 624-634.

    Google Scholar 

  7. K.P. Young and D.H. Kirkwood: Metall. Trans. A, 1975, vol. 6A, pp. 197-205.

    Article  Google Scholar 

  8. D.G. McCartney and J.D. Hunt: Acta Metall., 1981, vol. 29, pp. 1851-1863.

    Article  Google Scholar 

  9. A. Munitz: Metall. Trans. B, 1985, vol. 16B, pp. 149-161.

    Article  Google Scholar 

  10. J.A. Sarreal and G.J. Abbaschian: Metall. Trans. A, 1986, vol. 17A, pp. 2063-2073.

    Article  Google Scholar 

  11. T. Kraft, A. Roósz, and M. Rettenmayr: Scripta Mater., 1996, vol. 35 (1), pp. 77-82.

    Article  Google Scholar 

  12. D. Bouchard and J.S. Kirkaldy: Metall. Mater. Trans. B, 1997, vol. 28B, pp. 651-663.

    Article  Google Scholar 

  13. D. Eskin, Q. Du, D. Ruvalcaba, and L. Katgerman: Mater. Sci. Engr. A, 2005, vol. 405, pp. 1-10.

    Article  Google Scholar 

  14. G. Kasperovich, T. Volkmann, L. Ratke, and D. Herlach: Metall. Mater. Trans. A, 2008, vol. 39A, pp. 1183-1191.

    Article  Google Scholar 

  15. C.A. Gandin, S. Mosbah, T. Volkmann, and D.M. Herlach: Acta Mater., 2008, vol. 56, pp. 3023-3035.

    Article  Google Scholar 

  16. A.M. Mullis, L. Farrell, R.F. Cochrane, and N.J. Adkins: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 992-999.

    Article  Google Scholar 

  17. T. Sivarupan, C.H. Caceres, and J.A. Taylor: Metall. Mater. Trans. A, 2013, vol. 44A, pp. 4071-4080.

    Article  Google Scholar 

  18. I. Lichioiu, I. Peter, B. Varga, and M. Rosso: J. Mater. Sci. Technol., 2014, vol. 30(4), pp. 394-400.

    Article  Google Scholar 

  19. M.C. Flemings: Solidification Processing, McGraw-Hill Book Co., New York, NY, 1974, pp. 146-154.

    Google Scholar 

  20. C.A. Brice and W.H. Hofmeister: Metall. Mater. Trans. A, 2013,vol. 44A, pp. 5147-5153.

    Article  Google Scholar 

  21. R.J. Messler, Jr.: Principles of Welding, John Wiley & Sons, Inc., New York, NY, 1999, pp. 175-176.

    Book  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Mr. Richard Martin, Mr. Harold Claytor, and Mr. James Baughman of the NASA Langley Research Center for their assistance in the fabrication trials, sample preparation, and data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Craig A. Brice.

Additional information

Manuscript submitted September 30, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brice, C.A., Dennis, N. Cooling Rate Determination in Additively Manufactured Aluminum Alloy 2219. Metall Mater Trans A 46, 2304–2308 (2015). https://doi.org/10.1007/s11661-015-2775-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2775-x

Keywords

Navigation