Skip to main content
Log in

Optimizing the Compressive Strength of Strain-Hardenable Stretch-Formed Microtruss Architectures

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The mechanical performance of stretch-formed microtrusses is determined by both the internal strut architecture and the accumulated plastic strain during fabrication. The current study addresses the question of optimization, by taking into consideration the interdependency between fabrication path, material properties and architecture. Low carbon steel (AISI1006) and aluminum (AA3003) material systems were investigated experimentally, with good agreement between measured values and the analytical model. The compressive performance of the microtrusses was then optimized on a minimum weight basis under design constraints such as fixed starting sheet thickness and final microtruss height by satisfying the Karush–Kuhn–Tucker condition. The optimization results were summarized as carpet plots in order to meaningfully visualize the interdependency between architecture, microstructural state, and mechanical performance, enabling material and processing path selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M.F. Ashby: Phil Trans R Soc A, 2006; vol. 364, pp. 15-30.

    Article  Google Scholar 

  2. V.S. Deshpande, N.A. Fleck, M.F. Ashby: J Mech Phys Solids, 2001; vol. 49, pp. 1747-1769.

    Article  Google Scholar 

  3. V.S. Deshpande, M.F. Ashby, N.A. Fleck: Acta Mater, 2001; vol. 49, pp. 1035-1040.

    Article  Google Scholar 

  4. E. Bele, B.A. Bouwhuis, G.D. Hibbard: Mat Sci Eng A-Struct, 2008; vol. 489, pp. 29-37.

    Article  Google Scholar 

  5. S. Chiras, D.R. Mumm, A.G. Evans, N. Wicks, J.W. Hutchinson, K. Dharmasena, H.N.G. Wadley, S. Fichter: Int J Solids Struct, 2002; vol. 39, pp. 4093-4115.

    Article  Google Scholar 

  6. N. Wicks, J.W. Hutchinson: Mech Mater, 2004; vol. 36, pp. 739-751.

    Article  Google Scholar 

  7. A.J. Jacobsen, W. Barvosa-Carter, S. Nutt: Acta Mater, 2007; vol. 55, pp. 6724-6733.

    Article  Google Scholar 

  8. B.A. Bouwhuis, T. Ronis, J.L. McCrea, G. Palumbo, G.D. Hibbard: Comp Sci Tech, 2009; vol. 69, pp. 385-390.

    Article  Google Scholar 

  9. E. Bele, B.A Bouwhuis, G.D. Hibbard: Acta Mater, 2009; vol. 57, pp. 5927-5935.

    Article  Google Scholar 

  10. D.D. Radford, N.A. Fleck, V.S. Deshpande: Int J Impact Eng, 2006; vol. 32, pp. 968-987.

    Article  Google Scholar 

  11. K.P. Dharmasena, D.T. Queheillalt, H.N.G. Wadley, P. Dudt, Y. Chen, D. Knight, A.G. Evans, V.S. Deshpande: Eur J Mech A/Solids, 2010; vol. 29, pp. 56-67.

    Article  Google Scholar 

  12. C.J. Yungwirth, J. O’Connor, A. Zakraysek, V.S. Deshpande, H.N.G. Wadley: J Am Ceram Soc, 2011; vol. 94, pp. s62-s75.

    Article  Google Scholar 

  13. K.P. Dharmasena, H.N.G. Wadley, K. Williams, Z.Y. Xue, J.W. Hutchinson: Int J Impact Eng, 2011; vol. 38, pp. 275-289.

    Article  Google Scholar 

  14. A.G. Evans, J.W. Hutchinson, N.A. Fleck, M.F. Ashby, H.N.G. Wadley: Prog Mater Sci, 2001; vol. 46, pp. 309-327.

    Article  Google Scholar 

  15. S. Gu, T.J. Lu, A.G. Evans: Int J Heat Mass Tran, 2001; vol. 44, pp. 2163-2175.

    Article  Google Scholar 

  16. D.T. Queheillalt, H.N.G. Wadley: Acta Mater, 2005; vol. 53, pp. 303-313.

    Article  Google Scholar 

  17. D.T. Queheillalt, H.N.G. Wadley: Mater Sci Eng A, 2005; vol. 397, pp. 132-137.

    Article  Google Scholar 

  18. S.M. Pingle, N.A. Fleck, V.S. Deshpande, H.N.G. Wadley: Proc Roy Soc A-Math Phy, 2011; vol. 467, pp. 985-1011.

    Article  Google Scholar 

  19. S.M. Pingle, N.A. Fleck, V.S. Deshpande, H.N.G. Wadley: Int J Solids Struct, 2011; vol. 48, pp. 3417-3430.

    Article  Google Scholar 

  20. T.A. Schaedler, A.J. Jacobsen, A. Torrents, A.E. Sorensen, J. Lian, J.R. Greer, L. Valdevit, W.B. Carter: Science, 2011; vol. 334, pp. 962-965.

    Article  Google Scholar 

  21. L.M. Gordon, B.A. Bouwhuis, M. Suralvo, J.L. McCrea, G. Palumbo, G.D. Hibbard: Acta Mater, 2009; vol. 57, pp. 932-939.

    Article  Google Scholar 

  22. K. AbuSamk, B. Yu, G.D. Hibbard: Comp Part A, 2012; vol. 43, pp. 955-961.

    Article  Google Scholar 

  23. J.E. Campbell, M. Suralvo, G.D. Hibbard, H.E. Naguib: J Comp Mater, 2012; vol. 46, pp. 63-70.

    Article  Google Scholar 

  24. R.S. Farr: Phys Rev E, 2007; vol. 76, pp. 056608(7).

    Google Scholar 

  25. R.S. Farr, Y. Mao: Epl J, 2008; vol. 84, pp. 14001(6).

    Google Scholar 

  26. D. Rayneau-Kirkhope, Y. Mao, R. Farr: Phys Rev Letters, 2012; vol. 109, pp. 204301(4).

    Article  Google Scholar 

  27. D. Rayneau-Kirkhope, Y. Mao, R. Farr, J. Segal: Mech Res Comm, 2012; vol. 46, pp. 41-46.

    Article  Google Scholar 

  28. H.J. Frost, M.F. Ashby: Deformation-mechanism maps: the plasticity and creep of metals and ceramics, Oxford: Pergamon Press, 1982.

    Google Scholar 

  29. N. Wicks, J.W. Hutchinson: Int J Solids Struct, 2001; vol. 38, pp. 5165-5183.

    Article  Google Scholar 

  30. H.N.G. Wadley, N.A. Fleck, A.G. Evans: Comp Sci Tech, 2003; vol. 63, pp. 2331-2343.

    Article  Google Scholar 

  31. B.A. Bouwhuis, S.K. Tang, G.D. Hibbard: Comp Part A-Appl S, 2008; vol. 39, pp. 1556-1564.

    Article  Google Scholar 

  32. D.J. Sypeck, H.N.G. Wadley: Adv Eng Mater, 2002; vol. 4, pp. 759-764.

    Article  Google Scholar 

  33. F.R. Shanley: J Aeronaut Sci, 1947; vol. 14, pp. 261-267.

    Article  Google Scholar 

  34. F.R. Shanley: Strength of Materials, McGraw-Hill, New York, 1957.

    Google Scholar 

  35. V.S. Deshpande, N.A. Fleck: Int J Solids Struct, 2001; vol. 38, pp. 6275-6305.

    Article  Google Scholar 

  36. C.A. Steeves, N.A. Fleck: Int J Mech Sci, 2004; vol. 46, pp. 561-583.

    Article  Google Scholar 

  37. C.A. Steeves, N.A. Fleck: Scripta Mater, 2004; vol. 50, pp. 1335-1339.

    Article  Google Scholar 

  38. H.W. Kuhn and A.W. Tucker: Proc. Berkeley Symp. Math. Stat. Prob., University of California Press. Berkeley, 1951, pp. 481–492.

  39. W. Karush: M.Sc. Dissertation, University of Chicago, Chicago, IL, 1939.

  40. P.Y. Papalambros, D.J: Wilde. Principles of Optimal Design: Modeling and Computation. 2nd ed., Cambridge University Press, New York, 2000.

    Book  Google Scholar 

  41. J. Wang, A.G. Evans, K. Dharmasena, H.N.G. Wadley: Int J Solids Struct, 2003; vol. 40, pp. 6981-6988.

    Article  Google Scholar 

  42. W. Ramberg, W.R. Osgood: “Description of Stress–Strain Curves by Three Parameters”, The National Advisory Committee for Aeronautics (NACA) Technical Notes, 1943: No. 902.

  43. B.A. Bouwhuis, G.D. Hibbard: Metall Mater Trans A, 2008; vol. 39A, pp. 3027-3033.

    Article  Google Scholar 

  44. ASM Hanbook: Volume 14A Metalworking: Bulk Forming, Materials Park, OH, ASM International, 2005.

    Google Scholar 

  45. ASM Hanbook: Volume 14B Metalworking: Sheet Forming, Materials Park, OH, ASM International, 2006.

    Google Scholar 

  46. D. Raabe, M. Sachtleber, H. Weiland, G. Scheele, Z.S. Zhao: Acta Mater, 2003; vol. 51, pp. 1539-1560.

    Article  Google Scholar 

  47. G.E. Dieter: Mechanical Metallurgy. New York: McGraw-Hill, 1961.

    Book  Google Scholar 

  48. B.A. Bouwhuis, G.D. Hibbard: Metall Mater Trans B, 2006; vol. 37, pp. 919-927.

    Article  Google Scholar 

  49. L.M. Brown: Scripta Metall, 1977; vol. 11, pp. 127-131.

    Article  Google Scholar 

  50. K. Differt, U. Essmann, H. Mughrabi: Philos Mag A, 1986; vol. 54, pp. 237-258.

    Article  Google Scholar 

  51. T. Hasegawa, T. Yakou: Scripta Mater, 1980; vol. 14, pp. 1083-1087.

    Article  Google Scholar 

  52. J. Grabowski: Archiwum Inzynierii Ladowej, 1986; vol. 32, pp. 401-419.

    Google Scholar 

  53. B. Scholtes, O. Voehringer, E. Macherauch: Mater Forum, 1987; vol. 10, pp. 54-57.

    Google Scholar 

  54. F.J. Humphreys, M. Hatherly: Recrystallization and Related Annealing Phenomena, Elsevier, Oxford 2004.

    Google Scholar 

Download references

Acknowledgments

The authors would like to especially thank Dr. C.A. Steeves for helpful discussions, A.T. Lausic, C. Kwan, S. Boccia, and Dr. D. Grozea of the University of Toronto for their contributions. Finally, financial support from the Natural Sciences and Engineering Research Council of Canada (NSERC) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glenn D. Hibbard.

Additional information

Manuscript submitted February 25, 2014.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, B., Abu Samk, K. & Hibbard, G.D. Optimizing the Compressive Strength of Strain-Hardenable Stretch-Formed Microtruss Architectures. Metall Mater Trans A 46, 1985–1994 (2015). https://doi.org/10.1007/s11661-015-2774-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2774-y

Keywords

Navigation