Skip to main content

Early Stages of Precipitation Process in Al-(Mn-)Sc-Zr Alloy Characterized by Positron Annihilation

Abstract

Thermal effects on the precipitation stages in as-cast Al-0.70 at. pct Mn-0.15 at. pct Sc-0.05 at. pct Zr alloy were studied. The role of lattice defects was elucidated by positron annihilation spectroscopy (lifetime and coincidence Doppler broadening) enabling investigation of solutes clustering at the atomic scale. This technique has never been used in the Al-Sc- and/or Al-Zr-based alloys so far. Studies by positron annihilation were combined with resistometry, hardness measurements, and microstructure observations. Positrons trapped at defects are preferentially annihilated by Sc electrons. Lifetime of trapped positrons indicates that Sc atoms segregate at dislocations. Maximum fraction of positrons annihilated by Sc electrons occurring at 453 K (180 °C) suggests that clustering of Sc bound with vacancies takes place. It is followed by peak of this fraction at 573 K (300 °C). A rise of the contribution of trapped positrons annihilated by Zr electrons starting at 513 K (240 °C) and attaining maximum also at 573 K (300 °C) confirms that Zr participates in precipitation of the Al3Sc particles already at these temperatures. The pronounced hardening at 573 K (300 °C) has its nature in the precipitation of the Al3Sc particles with a Zr-rich shell. The contribution of trapped positrons annihilated by Mn electrons was found to be negligible.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. E.A. Marquis, D.N. Seidman: Acta Mater., 2005, vol. 53, pp. 4259-68. doi: 10.1016/j.actamat.2005.05.025.

    Article  Google Scholar 

  2. L.S. Toropova, D.G. Eskin, M.L.  Kharakterova, T.V. Dobatkina: Advanced Aluminium Alloys Containing Scandium – Structure and Properties, Gordon and Breach Science Publisher, The Netherlands, 1998.

    Google Scholar 

  3. J. Røyset, R. Ryum: Int. Mater. Rev., 2005, vol. 50, pp. 19-44. doi: 10.1179/174328005X14311.

    Article  Google Scholar 

  4. M. Vlach, I. Stulíková, B. Smola, N. Žaludová: Mater. Charact., 2010, vol. 61, pp. 1400-05. doi: 10.1016/j.matchar.2010.10.006.

    Article  Google Scholar 

  5. M. Vlach, I. Stulíková, B. Smola, J. Piesova, H. Cisarova, S. Danis, J. Plasek, R. Gemma, D. Tanprayoon, V. Neubert: Mater. Sci. Eng. A, 2012, vol. 548, pp. 27-32. doi: 10.1016/j.msea.2012.03.063.

    Article  Google Scholar 

  6. Z. Jia, J. Røyset, J.K. Solberg, Q. Liu: Trans. Nonferrous Met. Soc. China, 2012, vol. 22, pp. 1866-71. doi:10.1016/S1003-6326(11)61399-X.

    Article  Google Scholar 

  7. M.M.R. Jaradeh, T. Carlberg: J. Mater. Sci. Technol., 2011, vol. 27, pp. 615-27. doi:10.1016/S1005-0302(11)60116-3.

    Article  Google Scholar 

  8. Z. Zhou, B. Wu, S. Dou, C. Zhao, Y. Xiong, Y. Wu, S. Yang, Z. Wei: Metall. Mater. Trans. A, 2014, vol. 45, pp. 1720-35. doi: 10.1007/s11661-013-2117-9.

    Article  Google Scholar 

  9. C. Booth-Morrison, D.C. Dunand, D.N. Seidman: Acta Mater., 2011, vol. 59, pp. 7029-42. doi: 10.1016/j.actamat.2011.07.057.

    Article  Google Scholar 

  10. P. Cavaliere: J. Mater. Sci., 2006, vol. 41, pp. 4299-302. doi: 10.1007/s10853-006-6996-7.

    Article  Google Scholar 

  11. C. Booth-Morrison, D.N. Seidman, D.C. Dunand: Acta Mater., 2012, vol. 60, pp. 3643-54. doi: 10.1016/j.actamat.2012.02.030.

    Article  Google Scholar 

  12. W.W. Zhou, B. Cai, W.J. Li, Z.X. Liu, S. Yang: Mater. Sci. Eng. A, 2012, vol. 552, pp. 353-8. doi: 10.1016/j.msea.2012.05.051.

    Article  Google Scholar 

  13. N.A. Belov, A.N. Alabin, I.A. Matveeva: J. Alloys Compd., 2014, vol. 583, pp. 206-13. doi: 10.1016/j.jallcom.2013.08.202.

    Article  Google Scholar 

  14. B. Forbord, W. Lefebvre, F. Danoix, H. Hallem,  K. Marthinsen: Scripta Mater., 2004, vol. 51, pp. 333-7. doi: 10.1016/j.scriptamat.2004.03.033.

    Article  Google Scholar 

  15. W. Lefebvre, F. Danoix, H. Hallem, B. Forbord, A. Bostel,  K. Marthinsen: J. Alloys Compd., 2009, vol. 470, pp. 107-10. doi: 10.1016/j.jallcom.2008.02.043.

    Article  Google Scholar 

  16. N.Q. Vo, D.C. Dunand, D.N. Seidman: Acta Mater., 2014, vol. 63, pp. 73-85. doi: 10.1016/j.actamat.2013.10.008.

    Article  Google Scholar 

  17. M. Vlach, I. Stulíková, B. Smola, N. Žaludová, J. Černá: J. Alloys Compd., 2010, vol. 492, pp. 143-8. doi: 10.1016/j.jallcom.2009.11.126.

    Article  Google Scholar 

  18. H.I. Aaronson: Lectures on the Theory of Phase Transformations, AIME, New York, 1975.

    Google Scholar 

  19. I. Stulikova, B. Smola: Solid State Phenom., 2008, vol. 138, pp. 57-62. doi: 10.4028/www.scientific.net/SSP.138.57.

    Article  Google Scholar 

  20. M. Vlach, B. Smola, I. Stulíková, V. Očenášek: Int. J. Mater. Res., 2009, vol. 100, pp. 420-3. doi: 10.3139/146.110022.

    Article  Google Scholar 

  21. P.L. Rossiter: The Electrical Resistivity of Metals and Alloys, Cambridge University Press, United  Kingdom, 1987.

    Book  Google Scholar 

  22. E. Clouet, A. Barbu: Acta Mater., 2007, vol. 55, pp. 391-400. doi: 10.1016/j.actamat.2006.08.021.

    Article  Google Scholar 

  23. H.H. Jo, S.I. Fujikawa: Mater. Sci. Eng. A, 1993, vol. 171, pp. 151-61. doi: 10.1016/0921-5093(93)90401-Y.

    Article  Google Scholar 

  24. S.I. Fujikawa, M. Sugaya, H. Takei,  K.I. Hirano: J. Less-Common Met., 1979, vol. 63, pp. 87-97. doi: 10.1016/0022-5088(79)90211-X.

    Article  Google Scholar 

  25. C. Watanabe, T.  Kondo, R. Monzen: Metall. Mater. Trans. A, 2004, vol. 35, pp. 3003-8. doi: 10.1007/s11661-004-0247-9.

    Article  Google Scholar 

  26. P. Hautojärvi and C. Corbel: Proceedings of the International School of Physics “Enrico Fermi”, IOS Press, Amsterdam, 1995.

  27. P. Asoka-Kumar, M. Alatalo, V.J. Ghosh, A.C. Kruseman, B. Nielsen, K.G. Lynn: Phys. Rev. Lett., 1996, vol. 77, pp. 2097–2100. DOI:10.1103/PhysRevLett.77.2097.

    Article  Google Scholar 

  28. S.M. He, N.H. van Dijk, H. Schut, E.R. Peekstok, and S. van der Zwaag: Phys. Rev. B, 2010, vol. 81, p. 094103. DOI:10.1103/PhysRevB.81.094103.

  29. A. Somoza, M.P. Petkov, and K.G. Lynn: Phys. Rev. B, 2002, vol. 65, p. 094107. DOI:10.1103/PhysRevB.65.094107.

  30. F. Bečvář, J. Čížek, I. Procházka, J. Janotová: Nucl. Inst. Methods Phys. Res. A, 2005, vol. 539, pp. 372–85. DOI:10.1016/j.nima.2004.09.031.

    Article  Google Scholar 

  31. I. Prochazka, I. Novotny, F. Becvar: Mater. Sci. Forum, 1997, vols. 255-257, pp. 772-4. doi: 10.4028/www.scientific.net/MSF.255-257.772.

    Article  Google Scholar 

  32. J. Čížek, M. Vlček, I. Procházka: Nucl. Inst. Methods Phys. Res. A, 2010, vol. 623, pp. 982–94. DOI:10.1016/j.nima.2010.07.046.

    Article  Google Scholar 

  33. M. Hájek, J. Veselý, and M. Cieslar: Mater. Sci. Eng A, 2007, vol. 462, pp. 339-42. doi: 10.1016/j.msea.2006.01.175.

    Article  Google Scholar 

  34. J.M.C. Robles, E. Ogando, and F. Plazaola: J. Phys. Condens. Matter, 2007, vol. 19, p. 176222. DOI:10.1088/0953-8984/19/17/176222.

  35. R.N. West: in Positrons in Solids, P. Hautojärvi, ed., Springer, Berlin, 1979. DOI:10.1007/978-3-642-81316-0_3.

  36. J. Čížek, I. Procházka, T. Kmječ, P. Vostrý: Phys. Stat. Sol. A, 2000, vol. 180, pp. 439–58. DOI:10.1002/1521-396X(200008)180:2<439::AID-PSSA439>3.0.CO;2-9.

    Article  Google Scholar 

  37. H. Murakami, T. Endo, and I. Matsuda: Phys. Rev. B, 1991, vol. 44, p. 2504. DOI:10.1103/PhysRevB.44.2504.

  38. G. Dlubek: Mater. Sci. Forum, 1987, vols. 13-14, pp. 11-32. doi: 10.4028/www.scientific.net/MSF.13-14.11.

    Article  Google Scholar 

  39. L.C. Smedskjaer, M. Manninen, M.J. Fluss: J. Phys. F: Met. Phys. 1980, vol. 10, pp. 2237-49. doi: 10.1088/0305-4608/10/10/019.

    Article  Google Scholar 

  40. J. Čížek, O. Melikhova, I. Procházka, J. Kuriplach, I. Stulíková, P. Vostrý, and J. Faltus: Phys. Rev. B, 2005, vol. 7, p. 064106. DOI:10.1103/PhysRevB.71.064106.

  41. J. Čížek, I. Procházka, B. Smola, I. Stulíková, R.  Kužel, Z. Matěj, V. Cherkaska: Phys. stat. sol. A, 2006, vol. 203, pp. 466-77. doi: 10.1002/pssa.200521483.

    Article  Google Scholar 

  42. M.J. Puska, P. Lanki, R.M. Nieminen: J. Phys.: Condens. Matter, 1989, vol. 1, pp. 6081-6093.

    Article  Google Scholar 

  43. M. Doyama, J.S.  Koehler: Phys. Rev., 1964, vol. 134, pp. A522–A529. doi: 10.1103/PhysRev.134.A522.

    Article  Google Scholar 

  44. K.M. Carling, G. Wahnström, T.R. Mattsson, N. Sandberg, and G. Grimvall: Phys. Rev. B, 2003, vol. 67, p. 054101. DOI:10.1103/PhysRevB.67.054101 .

  45. K.E. Knipling, D.C. Dunand, and D.N. Seidman: Int. J. Mater. Res., 2006, vol. 97, pp. 246–65. DOI:10.3139/146.101249.

  46. A. Deschamps, E. Lae, P. Guyot: Acta Mater., 2007, vol. 55, pp. 2775-83. doi: 10.1016/j.actamat.2006.12.015.

    Article  Google Scholar 

  47. A. Tolley, V. Radmilovic, U. Dahmen: Scripta Mater., 2005, vol. 52, pp. 621-5. doi:10.1016/j.scriptamat.2004.11.021.

    Article  Google Scholar 

  48. P. Olafsson, R. Sandstrom, A.J.  Karlsson: J. Mater. Sci., 1997, vol. 32, pp. 4383-90. doi: 10.1023/A:1018680024876.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by The Czech Science Foundation (GACR) under Grant Number P108-12-G043. The work was also a part of activities of the Charles University Research Centre “Physics of Condensed Matter and Functional Materials”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Vlach.

Additional information

Manuscript submitted July 21, 2014.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vlach, M., Cizek, J., Melikhova, O. et al. Early Stages of Precipitation Process in Al-(Mn-)Sc-Zr Alloy Characterized by Positron Annihilation. Metall Mater Trans A 46, 1556–1564 (2015). https://doi.org/10.1007/s11661-015-2767-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-015-2767-x

Keywords

  • Ratio Curve
  • Isochronal Annealing
  • Positron Annihilation Spectroscopy
  • Positron Trapping
  • Trap Positron